A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kabel, A.C.

Paper Title Page
MOP104 Parallel 3D Finite Element Particle-In-Cell Code for High-Fidelity RF Gun Simulations 317
 
  • A.E. Candel, A.C. Kabel, K. Ko, L. Lee, Z. Li, C. Limborg-Deprey, C.-K. Ng, G.L. Schussman, R. Uplenchwar
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE contract DE-AC02-76SF00515.
SLAC's Advanced Computations Department (ACD) has developed the first high-performance parallel Finite Element 3D Particle-In-Cell code, Pic3P, for simulations of rf guns and other space-charge dominated beam-cavity interactions. As opposed to standard beam transport codes, which are based on the electrostatic approximation, Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses advanced Finite Element methods with unstructured meshes, higher-order basis functions and quadratic surface approximation. A novel scheme for causal adaptive refinement reduces computational resource requirements by orders of magnitude. Pic3P is optimized for large-scale parallel processing and allows simulations of realistic 3D particle distributions with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) rf gun are presented.