A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Gerhard, P.

Paper Title Page
MOP019 The HITRAP Decelerator Project at GSI - Status and Commissioning Report 100
 
  • L.A. Dahl, W. Barth, P. Gerhard, F. Herfurth, M. Kaiser, O.K. Kester, H.J. Kluge, S. Koszudowski, C. Kozhuharov, G. Maero, W. Quint, A. Sokolov, T. Stöhlker, W. Vinzenz, G. Vorobjev, D.F.A. Winters
    GSI, Darmstadt
  • B. Hofmann, J. Pfister, U. Ratzinger, A.C. Sauer, A. Schempp
    IAP, Frankfurt am Main
 
 

For injection into the ion trap facility HITRAP, the GSI accelerator complex has the unique possibility to provide beams of highly stripped ions and even bare nuclei up to Uranium at an energy of 4 MeV/u. The HITRAP facility consists of linear 108 MHz-structures of IH- and RFQ-type to decelerate the beams further down to 6 keV/u for capturing in a large penning trap for cooling purpose. The installation is completed except of the RFQ-tank. During commissioning periods in 2007 64Ni28+ and 20Ne10+ beam was used to investigate the beam optics from the experimental storage ring extraction to the HITRAP double-drift-buncher system. In 2008 the IH-structure decelerator and the downstream matching section was examined with 197Au79+ beam. Comprehensive beam diagnostics were installed: Faraday cups, tubular and short capacitive pick ups, SEM grids, YAG scintillation screens, a single shot pepperpot emittance meter, and a diamond detector for bunch shape measurements. Results of the extensive measurements are presented.

 
MOP046 Commissioning of the New GSI-Charge State Separator System for High Current Heavy Ion Beams 175
 
  • W. Barth, L.A. Dahl, P. Gerhard, L. Groening, M. Kaiser, S. Mickat
    GSI, Darmstadt
 
 

A dedicated charge separator system is now installed in the transfer line to the GSI-synchrotron SIS18. In former times charge separation was performed with a single 11 degree dipole magnet after a 25 m beam transport section. This was not adequate to meet the requirements during high current operation for FAIR: it only allows for charge state separation of low intensity and low emittance beams. With the new compact charge separator system emittance blow up and unwanted beam losses for high intensity beam operation will be avoided. Additionally a new beam diagnostics test bench is integrated. With this the beam parameters (ion current, beam profile, beam position, transversal emittance, bunch structure and beam energy) for the injection into the SIS18 can be measured in parallel to the routine operation in the transfer line. Results of the commissioning with high intensity argon beams as well as with an uranium beam will be reported.

 
MOP075 Benchmarking of Measurement and Simulation of Transverse RMS-Emittance Growth Along an Alvarez DTL 251
 
  • L. Groening, W. Barth, W.B. Bayer, G. Clemente, L.A. Dahl, P. Forck, P. Gerhard, I. Hofmann, G.A. Riehl, S. Yaramyshev
    GSI, Darmstadt
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
  • D. Uriot
    CEA, Gif-sur-Yvette
 
 

Funding: CARE, contract number RII3-CT-2003-506395) European Community INTAS Project Ref. no. 06-1000012-8782
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriate tools to simulate the beam dynamics are indispensable. This paper is on benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittance growth for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the mean value of final horizontal and vertical rms-emittances can be reproduced well by the codes.