A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Geng, Z.

Paper Title Page
THP102 Evaluation of Fast ADCs for Direct Sampling RF Field Detection for the European XFEL and ILC 1030
 
  • Z. Geng, S. Simrock
    DESY, Hamburg
 
 

For the LLRF system of superconducting linacs, precision measurements of the rf phase and amplitude are critical for the achievable field stability. In this paper, a fast ADC (ADS5474) has been evaluated for the measurement of a 1.3 GHz rf signal directly without frequency down conversion. The ADC clock frequency is synchronized with the rf frequency and chosen for non-IQ demodulation. In the laboratory, the Signal to Noise Ratio (SNR) of the ADC was studied for different clock and rf input levels, and the temperature sensitivity of the ADC has been determined. A full bandwidth phase jitter of 0.2 degree (RMS) and amplitude jitter of 0.32% (RMS) was measured. For field control of superconducting cavities with a closed loop bandwidth up to 100 KHz, one can expect to achieve a phase stability close to 0.01 degree. The main limitation will be the jitter of the external clock. We present a measurements at the cavities at FLASH and compare the result with the existing system.

 
THP103 LLRF System Requirement Engineering for the European XFEL 1033
 
  • S. Simrock, G. Ayvazyan, Z. Geng, M.K. Grecki
    DESY, Hamburg
  • B. Aminov
    CRE, Wuppertal
 
 

The LLRF system of the European XFEL must fulfill the requirements of various stakeholders: Photon beam users, accelerator operators, rf experts, controls system, beam diagnostics and many others. Besides stabilizing the accelerating fields the system must be easy to operate, to maintain, and to upgrade. Furthermore it must guarantee high availability and it must be well understood. The development, construction, commissioning and operation with an international team requires excellent documentation of the requirements, designs and acceptance test. For the rf control system of the XFEL the new system modeling language SySML has been chosen to facilitate the system engineering and to document the system. SysML uses 9 diagram types to describe the structure and behavior of the system. The hierarchy of the diagrams allows individual task managers to develop detailed subsystem descriptions in a consistent framework. We present the description of functional and non-functional requirements, the system design and the test cases. An attempt of costing the software effort based on the use case point analysis is also presented.