A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fagotti, E.

Paper Title Page
MOP036 The IFMIF-EVEDA RFQ: Beam Dynamics Design 145
 
  • M. Comunian, A. Pisent
    INFN/LNL, Legnaro, Padova
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
 
 

The IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) project foresees the construction of a high intensity deuteron accelerator up to 9 MeV, with the characteristics required for the actual IFMIF facility. The linac will be installed in Rokkasho, and INFN is in charge of the construction of a 5 MeV, 125 mA, deuteron RFQ operating at 175 MHz. In this article the beam dynamics design of this challenging RFQ is described, namely the design, the main outcomes in terms of beam particles physics, and finally the study of mechanical and rf field error tolerances. The RFQ design method has been aimed to the optimization of the voltage and R0 law along the RFQ, the accurate tuning of the maximum surface field and the enlargement of the acceptance in the final part of the structure. As a result this RFQ is characterized by a length shorter than in all previous design, very low losses (especially at higher energy) and small rf power dissipation.

 
MOP038 Fabrication and Testing of TRASCO RFQ 151
 
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
  • M. Comunian, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro, Padova
  • S.J. Mathot
    CERN, Geneva
 
 

The Legnaro National Laboratory (LNL) is building the 30 mA, 5 MeV front end injector for the production of intense neutron fluxes for interdisciplinary application. This injector comprises a proton source, a low energy beam transport line (LEBT), a radio frequency quadrupole (RFQ) and a beam transport line designed to provide a 150 kW beam to the berillium target used as neutron converter. The RFQ, developed within TRASCO project for ADS application, is designed to operate cw at 352.2 MHz. The structure is made of OFE copper and is fully brazed. The RFQ is built in 6 modules, each approximately 1.2 meter long. This paper covers the mechanical fabrication, the brazing results and acceptance tests for the various modules.

 

slides icon

Slides

 
MOP038 Fabrication and Testing of TRASCO RFQ 151
 
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
  • M. Comunian, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro, Padova
  • S.J. Mathot
    CERN, Geneva
 
 

The Legnaro National Laboratory (LNL) is building the 30 mA, 5 MeV front end injector for the production of intense neutron fluxes for interdisciplinary application. This injector comprises a proton source, a low energy beam transport line (LEBT), a radio frequency quadrupole (RFQ) and a beam transport line designed to provide a 150 kW beam to the berillium target used as neutron converter. The RFQ, developed within TRASCO project for ADS application, is designed to operate cw at 352.2 MHz. The structure is made of OFE copper and is fully brazed. The RFQ is built in 6 modules, each approximately 1.2 meter long. This paper covers the mechanical fabrication, the brazing results and acceptance tests for the various modules.

 

slides icon

Slides