A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Delayen, J.R.

Paper Title Page
THP040 A New TEM-Type Deflecting and Crabbing RF Structure 873
 
  • J.R. Delayen, H. Wang
    JLAB, Newport News, Virginia
 
 

Funding: Supported by US DOE Contract No. DE-AC05-06-OR23177
A new type of rf structure for the deflection and crabbing of particle bunches is introduced. It is comprised of a number of parallel TEM-resonant lines operating in opposite phase from each other. One of its main advantages is its compactness compared to conventional crabbing cavities operating in the TM110 mode, thus allowing low frequency designs. The properties and characteristics of this type of structure are presented.

 
THP041 Analysis of Electronic Damping of Microphonics in Superconducting Cavities 876
 
  • J.R. Delayen
    JLAB, Newport News, Virginia
  • S.U. De Silva
    ODU, Norfolk, Virginia
 
 

Funding: Supported by US DOE Contract No. DE-AC05-06OR23177
In low current applications superconducting cavities have a high susceptibility to microphonics induced by external vibrations and pressure fluctuations. Due to the narrow bandwidth of the cavities, the amount of rf power required to stabilize the phase and amplitude of the cavity field is dictated by the amount of microphonics that need to be compensated. Electronic damping of microphonics is investigated as a method to reduce the level of microphonics and of the amount of rf power required. The current work presents a detailed analysis of electronic damping and of the residual cavity field amplitude and phase errors due to the fluctuations of cavity frequency and beam current.

 
TUP028 Status of High Current R&D Energy Recovery Linac at Brookhaven National Laboratory 453
 
  • A. Kayran, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K.A. Drees, G. Ganetis, D.M. Gassner, J.G. Grimes, H. Hahn, L.R. Hammons, A. Hershcovitch, H.-C. Hseuh, A.K. Jain, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, T.C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, Z. Segalov, A.K. Sharma, J. Smedley, K. Smith, T. Srinivasan-Rao, J.E. Tuozzolo, G. Wang, D. Weiss, N. Williams, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Medford, NY
  • J.R. Delayen, L.W. Funk, H.L. Phillips, J.P. Preble
    JLAB, Newport News, Virginia
 
 

Funding: Work performed under contract No. DE-AC02-98CH10886 with the auspices of the DoE of United States.
An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch (~5 nC) and extremely low normalized emittance (~5 mm-mrad) at an energy of 20 MeV. Flexible lattice of ERL loop provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense cw e-beam. The superconducting 703 MHz rf photoinjector is considered as an electron source for such a facility. At first we develop the straight pass (gun – 5 cell cavity – beam stop) test for the SRF Gun performance studies. Then the novel injection line concept of emittance preservation at the lower energy will be tested at this ERL. In this paper we present the status and our plans for construction and commissioning of this facility.