A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Comunian, M.

Paper Title Page
MOP036 The IFMIF-EVEDA RFQ: Beam Dynamics Design 145
  • M. Comunian, A. Pisent
    INFN/LNL, Legnaro, Padova
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova

The IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) project foresees the construction of a high intensity deuteron accelerator up to 9 MeV, with the characteristics required for the actual IFMIF facility. The linac will be installed in Rokkasho, and INFN is in charge of the construction of a 5 MeV, 125 mA, deuteron RFQ operating at 175 MHz. In this article the beam dynamics design of this challenging RFQ is described, namely the design, the main outcomes in terms of beam particles physics, and finally the study of mechanical and rf field error tolerances. The RFQ design method has been aimed to the optimization of the voltage and R0 law along the RFQ, the accurate tuning of the maximum surface field and the enlargement of the acceptance in the final part of the structure. As a result this RFQ is characterized by a length shorter than in all previous design, very low losses (especially at higher energy) and small rf power dissipation.

MOP038 Fabrication and Testing of TRASCO RFQ 151
  • E. Fagotti
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
  • M. Comunian, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro, Padova
  • S.J. Mathot
    CERN, Geneva

The Legnaro National Laboratory (LNL) is building the 30 mA, 5 MeV front end injector for the production of intense neutron fluxes for interdisciplinary application. This injector comprises a proton source, a low energy beam transport line (LEBT), a radio frequency quadrupole (RFQ) and a beam transport line designed to provide a 150 kW beam to the berillium target used as neutron converter. The RFQ, developed within TRASCO project for ADS application, is designed to operate cw at 352.2 MHz. The structure is made of OFE copper and is fully brazed. The RFQ is built in 6 modules, each approximately 1.2 meter long. This paper covers the mechanical fabrication, the brazing results and acceptance tests for the various modules.


slides icon


MOP073 Parameter Design and Beam Dynamics Simulations for the IFMIF-EVEDA Accelerators 245
  • P.A.P. Nghiem, N. Chauvin, O. Delferrière, R.D. Duperrier, A. Mosnier, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Comunian
    INFN/LNL, Legnaro, Padova
  • C. Oliver
    CIEMAT, Madrid

One major subsystem of IFMIF (International Fusion Materials Irradiation Facility) is its accelerator facility, consisting of two 175 MHz CW accelerators, each accelerating a deuteron beam of 125 mA to the energy of 40 MeV. This high power beam, 10 MW, induces challenging issues that lead to plan a first phase called EVEDA (Engineering Validation and Engineering Design Activity), where only the portion up to 9 MeV of one accelerator will be constructed and tested. For these accelerators, the Parameter Design phase is about to be completed. This paper presents the status of these studies. Due to the very high beam intensity, particular efforts have been dedicated to minimise the space charge effect that can strongly increase the beam size via the halo, and the losses that can prohibit the requested hand-on maintenance. For that, Beam Dynamics simulations have been performed with 106 macro-particles, and a great vigilance has been granted to the emittance growth and the particles on the beam edge. Several possible solutions are presented, for which advantages and drawbacks to fulfil the specifications are discussed.