A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bellantoni, L.

Paper Title Page
TUP113 Emittance Exchange at the Fermilab A0 Photoinjector 667
 
  • T.W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  • L. Bellantoni, H.T. Edwards, R.P. Fliller, A.S. Johnson, A.H. Lumpkin, J. Ruan, R. Thurman-Keup
    Fermilab, Batavia
 
 

Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
An experiment has been developed at the Fermilab A0 Photoinjector Lab to demonstrate the exchange of longitudinal emittance with the horizontal emittance. Our apparatus consists of a 3.9 GHz TM110 deflecting rf cavity placed between two magnetic dogleg channels. The first dogleg generates the needed dispersion to appropriately position the off-momentum electrons in the TM110 cavity. The TM110 cavity reduces the momentum spread and imparts a time dependent transverse kick. The second dogleg finishes the exchange and yields the exchange of the emittances. We report on the measurement of the exchange beamline matrix elements as well as an inital report on measuring the exchange emittances directly.

 

slides icon

Slides

 
THP023 Crab Cavities for Linear Colliders 830
 
  • G. Burt, P.K. Ambattu, R.G. Carter, A.C. Dexter, M.I. Tahir
    Cockcroft Institute, Lancaster University, Lancaster
  • C. Adolphsen, Z. Li, A. Seryi, L. Xiao
    SLAC, Menlo Park, California
  • C.D. Beard, D.M. Dykes, P. Goudket, A. Kalinin, L. Ma, P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L. Bellantoni, B. Chase, M. Church, T.N. Khabiboulline
    Fermilab, Batavia
  • R.M. Jones
    UMAN, Manchester
  • A. Latina, D. Schulte
    CERN, Geneva
 
 

Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favours a 3.9 GHz superconducting, multi-cell cavity as the ILC solution, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are special issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.