A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Adolphsen, C.

Paper Title Page
TUP111 Longitudinal Bunch Lengthening Compensation in a High Charge RF Photoinjector 661
 
  • S. Pei, C. Adolphsen
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE contract DE-AC02-76SF00515
In high charge rf photo-injectors, due to the strong longitudinal space charge, bunch lengthening can readily occur. This paper presents beam dynamics studies of such bunch lengthening and methods to compensate it. With these methods, not only can the bunch length be preserved, but it can be shortened at the photo-injector exit.

 
THP023 Crab Cavities for Linear Colliders 830
 
  • G. Burt, P.K. Ambattu, R.G. Carter, A.C. Dexter, M.I. Tahir
    Cockcroft Institute, Lancaster University, Lancaster
  • C. Adolphsen, Z. Li, A. Seryi, L. Xiao
    SLAC, Menlo Park, California
  • C.D. Beard, D.M. Dykes, P. Goudket, A. Kalinin, L. Ma, P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L. Bellantoni, B. Chase, M. Church, T.N. Khabiboulline
    Fermilab, Batavia
  • R.M. Jones
    UMAN, Manchester
  • A. Latina, D. Schulte
    CERN, Geneva
 
 

Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favours a 3.9 GHz superconducting, multi-cell cavity as the ILC solution, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are special issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

 
THP038 A New SRF Cavity Shape with Minimized Surface Electric and Magnetic Fields for the ILC 867
 
  • Z. Li, C. Adolphsen
    SLAC, Menlo Park, California
 
 

Funding: Work supported by DOE contract DE-AC02-76SF00515.
The TESLA-shape cavity has been chosen as the baseline design for the 1.3 GHz SCRF linacs of the International Linear Collider. However, there is ongoing research to develop new cavity shapes that will support higher gradients and hence lower the machine cost. The critical magnetic flux (Bc) of the niobium, which is approximately 180 mT, ultimately limits the gradient achievable in a superconducting cavity. Thus far, the new designs have focused on minimizing the peak surface magnetic field (Bs) for a given on-axis gradient, while relaxing the requirement on the peak surface electric field (Es). For example, the Low Loss (LL) design reduces Bs by more than 10% relative to the baseline design, which should allow a gradient of up to 50 MV/m with a 20% reduction in cryogenics loss. However, Es is about 15% higher in this case, which enhances field emission that in practice is one of the main impediments to achieving the Bc-limited gradient. In this paper, we will present an optimized cavity shape that reduces both Bs and Es, and thus should have a better chance of reaching higher gradients. The design of HOM couplers for wakefield damping in this cavity will also be presented.

 

slides icon

Slides

 
THP061 High Power Test of a Low Group Velocity X-Band Accelerator Structure for CLIC 930
 
  • S. Döbert, A. Grudiev, G. Riddone, M. Taborelli, W. Wuensch, R. Zennaro
    CERN, Geneva
  • C. Adolphsen, V.A. Dolgashev, L. Laurent, J.R. Lewandowski, S.G. Tantawi, F. Wang, J.W. Wang
    SLAC, Menlo Park, California
  • S. Fukuda, Y. Higashi, T. Higo, S. Matsumoto, K. Ueno, K. Yokoyama
    KEK, Ibaraki
 
 

In recent years evidence has been found that the maximum sustainable gradient in an accelerating structure depends on the rf power flow through the structure. The CLIC study group consequently designed a new prototype structure for CLIC with a very low group velocity, input power and average aperture (a/λ = 0.12). The 18 cell structure has a group velocity of 2.4% at the entrance and 1% at the last cell. Several of these structures have been made in collaboration between KEK, SLAC and CERN. A total of five brazed-disk structures and two quadrant structures have been made. The high power results of some of these structures are presented. The first KEK/SLAC built structure reached an unloaded gradient in excess of 100 MV/m at a pulse length of 230 ns with a breakdown rate below 10-6. The high-power testing was done using the NLCTA facility at SLAC.

 
THP072 Performance of a 1.3 GHz Normal-Conducting 5-Cell Standing-Wave Cavity 957
 
  • F. Wang, C. Adolphsen, J.W. Wang
    SLAC, Menlo Park, California
 
 

Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.
A 5-cell, normal-conducting, 1.3 GHz, standing-wave cavity was built as a prototype capture accelerator for the ILC positron source. Although the ILC uses predominately super-conducting cavities, the capture cavity location in both a high radiation environment and in a solenoidal magnetic field requires it to be normal conducting. With the ILC requirements of relatively long beam pulse on-time (1 msec at 5 Hz) and high gradient for efficient positron capture (15 MV/m), achieving adequate cavity cooling to prevent detuning was challenging. This paper presents the operational performance of this cavity including its breakdown characteristics as a function of gradient, pulse length and solenoidal magnetic field strength. In addition, these results are compared with those from other normal-conducting cavities at various frequencies

 
THP073 Progress in L-Band Power Distribution System R&D at SLAC 960
 
  • C.D. Nantista, C. Adolphsen, F. Wang
    SLAC, Menlo Park, California
 
 

Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
We report on the L-band rf power distribution system (PDS) developed at SLAC for Fermilab's NML superconducting test accelerator facility. The makeup of the system, which allows tailoring of the power distribution to cavities by pairs, is briefly described. Cold test measurements of the system and the results of high power processing are presented. We also investigate the feasibility of eliminating the expensive, lossy circulators from the PDS in the ILC linacs by taking advantage of our scheme of pair-feeding through 3-dB hybrids. A computational model is used to simulate the impact on field stability of inter-cavity coupling due to reduced isolation. Measurements of typically achievable hybrid port isolations provide the likely magnitude for such coupling.