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Abstract 
Analytical expression of CSR impedance is necessary 

for the study of the CSR-induced microbunching 
instability. In this paper, we present analysis of the 
transient CSR impedance of the entrance and exit cases 
for the non-ultrarelativistic regime, and show that the new 
results reduce to the existing expressions at the 
ultrarelativistic limit. 

INTRODUCTION 
   The CSR-induced microbunching instability ( μBI) can 

be studied either in the time domain by particle tracking 
[1, 2] or in the frequency domain by the Vlasov analysis 
[3-5].  Particle tracking is usually based on the CSR 
wakefield calculation. The validity of the Vlasov analysis 
can be verified by benchmarking the micro-bunching gain 
results from the semi-analytical Vlasov solver against 
those extracted from careful particle tracking [6].  Such 
benchmarking can be done only when the CSR wakefield 
used in particle tracking and the CSR impedance used in 
Vlasov analysis are consistent with each other for a given 
regime of approximations. 
    Most particle tracking codes for machine designs use 
analytical expressions of CSR wakefield based on the 1D 
rigid-bunch model. For example, ELEGANT uses the 
ultra-relativistic limit (γ → ∞) of the CSR wakefield 
expressions from Ref. [7], for the steady-state [8] as well 
as the (entrance and exit) transient CSR interactions [9]. 
The analyses of CSR wakefields are later extended to a 
wider energy regime [10,11], with the CSR shielding 
effect included in Ref. [11]. Likewise, for the Vlasov  
μBI analysis, the steady-state CSR impedance in the 
ultrarelativistic regime was employed in early studies 
[3,4], which is later extended to include entrance-CSR 
impedance at γ → ∞ [12]. Further applications of the 
μBI theory to lower energy or shorter perturbation 
wavelength are made possible by extending the steady-
state CSR impedance to the non-ultrarelativistic (or finite 
γ ) regime [13]. In this paper, we continue to expand our 
previous study of the steady-state CSR impedance for 
finite γ  to the transient CSR regime, including both the 
entrance and exit interactions. At γ → ∞ , our results 
reduce to the ultrarelativistic results of the existing 
theories. 

ENTRANCE CASE 
   The wakefield of CSR interaction for a bunch entering a 
magnetic dipole can be studied based on the Lienard-
Wiechert (LW) field between two-particles. Unlike the 
previous approach [7] that applies Taylor expansion for 
the LW fields, here we give the exact analytical 
expression of the CSR wakefield and impedance by using 
the relation between LW fields and potentials, based on 
an early study of the entrance-CSR wakefield [14]. In the 
following we describe the geometry of the problem and 
briefly summarize the results. 

Figure 1:  Interaction from S’ to S at dipole entrance. 

 Consider a rigid-line bunch, with design energy 
E = γ mc2  ,  moving in free space from a straight path to 
a circular orbit of radius ρ  (see Fig. 1). Let s  be the
pathlength parameter along the design orbit, z  the
longitudinal distance of a particle from the bunch center, 
and λ(z) the density distribution of the bunch. The 
motion of a particle, with intra-bunch coordinate z , is
described by s = z + βct  for β = 1− γ −2 . Here we set 
t = 0  for the moment when the bunch center (z = 0) is at 
the entrance of the dipole (θ = 0).   

  At time t , the wakefield of the bunch on a test 
particle S , at angle θ  on the circular orbit, is the 
integration of LW fields generated from all other particles 
in the bunch 

Es (θ ,t) = Es0
(A) (θ,t; ′z )λ( ′z )d ′z

−∞

′zc

 + Es0
(B) (θ ,t; ′z )λ( ′z )d ′z .

′zc

∞

   (1) 

Here Es0 (θ ,t; ′z )  is the longitudinal electric field 
reaching S  at (s = ρθ ,t) , which is emitted from the 
source particle ′S  at the retarded location and time 
( ′s , ′t )   with ′z = ′s − βc ′t . Adopting notations in Ref.
[7], we use the superscript (A) for the case when ′S  is on 
the straight path ( ′s = − ′x ) and (B) for ′S  on the circular 
orbit ( ′s = ρ ′θ ). For the integration limits in Eq. (1), ′zc
is the intra-bunch coordinate for source particles with 
retarded location ′θ = 0 , and the infinity limits of ′z
assume the integrand is negligible at large ′z .

 ___________________________________________  

* This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Nuclear Physics under contract 
DE-AC05-06OR23177. 
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     The retardation requires 

                     
 

where  is the vector from ′S   to S .  For  Δz = z − ′z ,  
the retardation for case (A) gives [7] 

  Δz = (ρθ + ′x ) − βR ,                 (3) 
and for case (B), with , it gives [7,8] 

Δz = ρ Δθ − 2β sin Δθ 2( )                    (4) 

When , we have  for 

             
                             (5) 

 
      Note that for case (A), the electric field on  exerted 
by ′S appears to be originated from  in Fig. 1, which is 
the location of ′S  at time t  were the source particle ′S  to 
continue its straight-path motion at ′t  with v = βc  
without turning onto the circular orbit as the test particle 

 does. In the coordinate frame , we have 

    
    (6) 

The LW field in Eq. (1) can be written as    

           Es0
(A)(θ,t; ′z ) = e

γ ′Rx cosθ + γ Ry sinθ
(γ 2 ′Rx

2 + Ry
2 )3/2         (7) 

where the dependence on ′z  and t  are contained in Δz  
of Eq. (6). Note that this longitudinal field is strongest 
when ′Rx = 0, or when the field lines originated from ′Sp  
shines right on top of S . From the relation between the 
LW field and the LW scalar and vector potentials 

,  it has been shown [14]  

      (8) 
 with  

           

for  

              
Λ0 (θ ,Δz) = e sinθ

Ry

− e
(1− cosθ ) + ′Rx sinθ Ry

′Rx
2 +γ −2Ry

2
,   

 
which satisfies Λ0 (θ ,Δz) = 0  when Δz → ∞ ,  and  

         
 

Correspondingly, for case (B), we have  

                                 (9) 

for 
  

with Δθ  implicitly depending on Δzvia Eq. (5). 
 
    The wakefield on S  in Eq. (1) can be obtained by using 
the LW fields in Eqs. (8) and (9) followed by integration 
by parts, yielding  

                       Es (θ ,t) = Es
(A) + Es

(B)                       (10) 
for  

           
Es

(A ) = λ(z − Δzc (θ ))Λ0 (θ ,Δzc(θ ))

      + V0
(A)(θ ,Δz)

Δz(θ )

∞


∂λ(z − Δz)

∂Δz
dΔz

          (11) 

and 

 

Es
(B) = −e g(Δθ )∂z

0

θ

 λ z − ρΔθ − β2ρ sin Δθ 2( ) ( )dΔθ

           − e g(Δθ )∂z
0

∞

 λ z + ρΔθ + β2ρ sin Δθ 2( ) ( )dΔθ

  (12) 

with 
        g(Δθ ) = γ −2 + β 2 (1− cos Δθ )  2sin Δθ 2( )( ). 
Here for Es

(A) in Eq. (11), we have 
          Λ0 (θ ,Δzc (θ )) = − e tan θ 4( ) ρ ,                (13) 

and 

 V0
(A) θ,Δz( ) = e

ρ
tan−1 θ

2






1−
′Rx − γ −2Ry tan−1θ

′Rx
2 +γ −2Ry

2













.  (14) 

The latter becomes a step function at γ → ∞  

       V0
(A) (θ ,Δz)

γ →∞
≈ 4e

ρθ
H ρθ 3

6
− Δz







                  (15) 

for  the Heaviside function 
        H (x) = 1 (for x ≥ 0),  H (x) = 0 (for x < 0).        (16) 
At γ → ∞and θ 2 1, Eq. (11) reduces to results in [9] 

         
Es (θ ,t) ≈ 4e

ρθ
λ z − ρθ 3

6






− λ z − ρθ 3

24
















       − 2e
3ρ 2( )1/3

1
z − ′z( )1/3

z−ρθ 3 24

z


∂λ( ′z )

∂ ′z
d ′z

       (17)    

        
      With the above wakefield expressions, we can obtain 
the CSR impedance by  

                (18) 

For the entrance-CSR, we get from Eqs. (10)-(14)      
              Z(k,θ ) = Z (A)(k,θ ) + Z (B) (k,θ )                 (19) 

with 

         
Z (A) = 1

ρ
tan θ

4






e− ikΔzc θ( )

       + ik V0
(A)(θ ,Δz) e( )

Δzc (θ )

∞

 ⋅e−ikΔzdΔz

            (20) 

 (the first term is negligible) for V0
(A) (θ ,Δz) in Eq. (14),  

and  

    
Z (B) = ik g Δθ( )

0

Δzc (θ )

 ⋅e− ikρ Δθ −2β sin Δθ 2( ) dΔθ

       + ik g Δθ( )
0

∞

 ⋅eikρ Δθ +2β sin Δθ 2( ) dΔθ

           (21) 

Δθ = θ − ′θ

′θ = 0 Δzc = z − ′zc

Δzc = ρ θ − 2β sin θ 2( ) .

S
′Sp

S
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For largeθ , Eq. (21) gives the steady-state CSR 
impedance for finite γ [13],  or Z(k,θ ) ≈ Z (B) (k,θ ). At 
γ → ∞ , usingV0

(A) (θ,Δz) in Eq. (15), one gets the 
ultrarelativistic entrance impedance [12,15]  

        Z(k,θ ) = 4
ρθ

e− iμ − e−4 iμ + (iμ)1/3 f (μ)         (22) 

for μ = kρθ 3 24, and f (μ) = Γ(2 3) − Γ(2 3,iμ) . 

EXIT CASE 
     The exit case is illustrated in Fig. 2 [7].  

 
Figure 2: Geometry of interaction on S for exit case. 

 
The longitudinal wakefield on S  is given by  
               Es (x,t) = Es

(C ) + Es
(D) + Es

(E ) 
with 

              

Es
(C ) = Es0

(C )(x,t; ′z )λ( ′z )d ′z
−∞

′z (θ )

 ,

Es
(D ) = Es0

(D )(x,t; ′z )λ( ′z )d ′z
′z (θ )

′z (0)

 ,

Es
(E ) = Es0

(E ) (x,t; ′z )λ( ′z )d ′z ,
′z (0)

∞



        (23)   

for integration limit ′z ′θ( )  given by Eq. (24). Here  

Es0
(C )(x,t; ′z ) is the LW field on S  at (x,t)  generated 

from ′S  at ( ′x , ′t )  upstream of the dipole,  

Es0
(D ) (x,t; ′z )  is from ′S  at ( ′θ , ′t )  inside the dipole,  

and Es0
(E )(x,t; ′z ) is from ′S on the same straight path as 

S  downstream of the dipole. Note that Es0
(C )(x,t; ′z ) can 

be expressed exactly as Es0
(A)(x,t; ′z )in Eqs. (7)-(9),  

with ′Rx  and Ry  replaced by  
′Rx = Δz − ρ(θ − sinθ ) − x(1− cosθ ),  

Ry = ρ(1− cosθ ) + xsinθ .
 

     The focus of our discussion will be on the Es
(D ) term 

in Eq. (23), or case (D) in Ref. [7]. Here ′θ and ′z are 
related by retardation relation 
                   Δz = x + ρ ′θ − βR(x, ′θ )               (24) 
for 

       R(x, ′θ ) = x2 + 2ρxsin ′θ + 2ρ sin ′θ 2( ) 
2
.  

With Taylor expansion for ߛ	 ≫ 1	and ߠ′ଶ ≪ 1	, it is 
shown [7] 

                Es0
(D) (x,t; ′z )d ′z = − ∂V0

(D)(x, ′θ )
∂ ′θ

d ′θ     

for  

       V0
(D ) = 4e

ρ
2γ −2 ′θ + x ρ( ) + ′θ 2 ′θ + 2x ρ( )

γ −2 2 ′θ + x ρ( ) 
2

+ ′θ 2 ′θ + 2x ρ( )2
  (25) 

Therefore  

        
Es

(D ) = −V0
(D ) (x, ′θ )λ z − Δz x, ′θ( )( )

0

θ

          + V0
(D )(x, ′θ ) ∂

∂ ′θ0

θ

 λ(z − Δz(x, ′θ ))d ′θ
  (26) 

At γ → ∞ , we have 

                    V0
(D )(x, ′θ ) = 4e

ρ
1

′θ + 2x ρ
                    (27) 

and Es
(D ) in Eq. (26) reduces to the well-known 

expression for exit-CSR impedance for ultrarelativistic 
beams [9] (with W=-Es/e) 

Es
(D) = − 4e

ρ
λ z − Δz(x, ′θ )( )

′θ (Δz) + 2 x ρ
Δzmin

Δzmax

+
∂ ′z λ( ′z ) ∂ ′z

′θ (z − ′z ) + 2 x ρ
d ′z

z−Δzmax

z−Δzmin










  

where ′θ (Δz) is given in Eq. (26), with ′θ (Δzmin ) = 0
and ′θ (Δzmax ) = θ .  
      Subsequently, the exit-CSR impedance can be derived 
using Eq. (18), yielding 

                Z (D )(k, x) = ∂V0
(D )(x, ′θ )
∂ ′θ0

θ

 e−ikΔz(x, ′θ )d ′θ         (28) 

for V0
(D )(x, ′θ ) in Eq. (25), or   

          
Z (D )(k, x) = V0

(D )(x, ′θ )e− ikΔz(x, ′θ )
0

θ

             − V0
(D )(x, ′θ ) ∂

∂ ′θ
e− ikΔz(x, ′θ )





0

θ

  d ′θ
       (29) 

The above expression applies for large but finite γ , and it 
uses the explicit retardation relation Δz(x, ′θ ) in Eq. (24) 
without the need to solve its inverse function. At high 
frequency, we found Eq. (28) is less prone to numerical 
error as compared to Eq. (29).  

CONCLUSION 
In this paper, we present the analytical expression of CSR 
impedance for the entrance and exit problems for finite 
γ , that reduces to the well-known results for γ → ∞ . 
Edge term contributions, singularity removal by renor-
malization [7], and behaviours of the wakefield and 
impedance in various parameter regimes will be discussed 
elsewhere [16].  
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