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Abstract
The overall performance of an electron storage ring is

critically dependant on a large number of variables. It can
be characterised in many ways, such as by lifetime, injec-
tion efficiency, beam stability and so on. It is frequently the
case however that improving one parameter comes at the
cost of harming another. Equally, given the large number
of variables involved in optimising the ring performance,
the true, global optimum solution may be difficult to iden-
tify using simple parameter scans. In order to address this
problem, a flexible optimisation tool has been developed.
This tool is capable of optimising several parameters at once
and can cope with an arbitrary number of input variables
(individuals or families). The tool is designed to be robust
to measurement noise, and has been applied to a number
of different optimisation problems. This paper presents an
overview of the package, as well as the results of the first
tests.

INTRODUCTION
Optimising an electron storage ring performance can face

a number of potential difficulties. The impact of varying pa-
rameters can be complex to predict due to the non-linear na-
ture of the system and the large number of variables involved.
The optimisation function may suffer from dis-continuities
or local minima that can prevent traditional gradient-based
searches from succeeding. Quantifying the performance can
also be imprecise due to the presence of noise or drift in the
objective that is to be optimised. It can also be subjective,
as frequently the improvement of one parameter can lead to
the degradation of another.

At Diamond, the primary optimisation method is to make
use of 1D or 2D parameter scans. This can be very effective,
but relies on starting close to the optimal position, is limited
by the number of variables that can be scanned at one time
and can be inefficient. For more complex problems, the
Robust Conjugate Direction Search algorithm is used [1].
This has been demonstrated to converge quickly, copes well
with noisy data and can handle an arbitrary number of input
variables, but is limited to optimising a single objective.

In order to address these issues, Diamond has imple-
mented an online tool that uses modern multi-objective,
population-based optimisation techniques. The tool has been
structured with future extensions in mind, so that additional
optimisation algorithms can be included as modules. It can
be applied to single or multi-objective problems, is flexible in
the definition of input variables, and has been demonstrated
to be robust against measurement noise.

Figure 1: Structure of online optimisation package.

MULTI-OBJECTIVE OPTIMISATION
Pareto Front and Solution Ranking
When considering two or more objectives, the optimum

solution can vary depending upon the circumstances. For
instance, it may be that for one situation the lifetime may be
the biggest concern, but for another the injection efficiency
must be maximised, even though it results in a lower lifetime.
Population-based searches address this by maintaining

a distribution of solutions. These are sorted into ‘non-
dominated fronts’, for which no member is worse than an-
other in more than one objective simultaneously. The fronts
can be further sorted according to how diverse the solutions
are, as this helps to identify the true global optimum for each
objective. The goal of the optimisation algorithm is then to
move the population towards the so-called Pareto-optimal
front, after which no further improvement is possible.

Genetic Algorithm
Genetic algorithms (GA) lend themselves well to the topic

of multi-objective optimisation. For the package described
here, the NSGA-II genetic algorithm has been used [2]. This
is a computationally-efficient algorithm, in which an initial
random population evolves towards the optimum through the
process of selection, cross-over and mutation. The algorithm
is elitist, ensuring good solutions are prevented from being
lost from the population and helping to speed up convergence.
In this implementation, it is also possible to include the initial
machine state in the starting population.
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Figure 2: Screenshot of the Main UI for the optimiser. The top-left panel controls the parameters to be varied, the top-right
panel controls the objective functions, and the lower panels are used to define the paths.

Simulated Annealing
Simulated annealing (SA) algorithms are well-suited to

cases that consist of many disconnected local minima or that
suffer from noisy data, as no gradient information is required.
They can also be applied to multi-objective problems by
creating an archive of non-dominated solutions [3].
In the implementation used here, an initial input vector

xn is assessed against each of the objective functions fi(xn),
before being randomly adjusted and re-evaluated. The prob-
ability P that new solution will be accepted and stored in the
archive is given by

P = min

(
1, exp

(∑
i

fi(xn+1) − fi(xn)
Ti

))
(1)

In common with standard simulated annealing algorithms,
the temperature for each objective Ti is reduced according
to a schedule, thereby lowering the probability over time
that an objectively worse solution will be accepted as the
new solution. The definition of an effective temperature
schedule is one of the biggest challenge of such optimisers
[4]. Periodically, the optimisation is ‘reset’ by re-starting
the procedure using a member of the non-dominated archive,
and the temperatures increased.

OPTIMISATION PACKAGE
The optimisation package is predominantly written in

Python, with the except of the simulated annealing algo-
rithm. This section has been written in Matlab, with Python
wrappers to link it to the main Python control scripts. The
structure of the code is illustrated in Fig. 1, and consists of:

• the main user interface (UI)
• the optimiser
• the interaction controller

Main UI
The main UI can be seen in Fig. 2. This is where the

input variables and objective function(s) are configured and
the choice of optimisation algorithm is made. The input
variables can be selected either singly or in groups, and
absolute or relative bounds can be defined for each parameter.
When adding in groups, the user can choose whether to
maintain any initial differences, or if all members should be
set to the same absolute values. Minimum wait times after
setting the process variables (PVs) can also be defined.

At present it is only possible to select either one or two ob-
jective functions, but extension to higher numbers is straight-
forward. The UI can be used to define the number of times
each objective should be measured, and the delay between
acquisitions can be set to ensure the data is fresh. It is also
possible to choose whether to maximise or minimise each
objective. The main UI is also used to select which algo-
rithm is used to carry out the optimisation, and pre-defined
configurations can be loaded or saved.

Optimiser
Once the problem has been defined, the optimisation script

is called. This section allows the algorithm-specific parame-
ters to be set (such as population size, mutation probability,
etc.), and controls any plotting/visualisation relevant to the
chosen algorithm. Interaction with the machine is carried
out using the interaction controller.

Interaction Controller
The interaction controller is responsible for applying the

input variables to the machine via EPICS and for return-
ing each of the objective functions. The controller maps
between the algorithm-specific parameters (such as the rel-
ative change in strength for each sextupole family) and the
machine parameters (i.e. the absolute individual magnet
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Figure 3: Evolution of MOGA variables during the injection optimisation test. The injection efficiency and stored beam
oscillation amplitude are highlighted in blue and red respectively. Green lines indicate kicker amplitudes, orange lines show
kicker timing, and light blue lines show the strength of two steerers in the transfer line.

strengths). Depending upon the configuration, these two
sets can have different sizes and different values. For each
objective function, the mean and standard error are returned
over the specified number of measurement samples. Each
objective is measured simultaneously in order to reduce the
total acquisition time.

Running the Optimiser
Once the optimisation has started, a figure is displayed

giving information about progress. In the case of the GA, this
consists of a progress bar, a strip-tool of the parameter values,
and non-dominated fronts after each generation. At the end
of the optimisation the machine is returned to its initial
configuration and a second, interactive figure is displayed.
Using this figure it is possible to select any given point on
the non-dominated front by clicking on it. This in turn pops
up another UI which displays information about the selected
point (such as input parameter and objective function values),
and gives the option to apply the settings to the machine.
The details of each optimisation run are archived for later
analysis.

MACHINE TESTS
To illustrate the effectiveness of the optimiser, the results

of a GA run are shown in Figs. 3 and 4. In this example,
the objective was to recover injection efficiency from an
initially poor state, whilst minimising disturbance to the
stored beam (blue and red lines respectively in Fig. 3). To
achieve this goal, the individual strengths and timings of the
four injection kicker magnets plus the strengths of the last
two steerers in the transfer line were varied.

There are three points highlighted in Fig. 4. In purple, the
initial machine state is shown, then two candidate solutions
are shown in green and red. The first manages to improve

Figure 4: Non-dominated fronts after each generation for
the optimisation shown in Fig. 3. See text for more details.

both objectives simultaneously. The second achieves an even
higher injection efficiency at the expense of a considerable
increase in stored beam disturbance, as confirmed by the
data shown in Fig. 3.

CONCLUSIONS

Despite the demonstrated effectiveness of the tool, the
optimisation package remains a work in progress. Future
developments include the addition of other optimisation al-
gorithms (such as Particle Swarm [5]), the ability to usemore
complex objective functions beyond simple PVs, and outlier-
rejection for the measured data. The ability to view/apply
the results of a previous optimisations will also be added.
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