
AUTOMATIZED OPTIMIZATION OF BEAM LINES USING
EVOLUTIONARY ALGORITHMS

S. Appel∗, S. Reimann†, V. Chetvertkova, W. Geithner, F. Herfurth, U. Krause, M. Sapinski, P. Schütt
GSI, Darmstadt, Germany

D. Österle, KIT, Karlsruhe, Germany

Abstract
Due to the massive parallel operation modes at GSI accel-

erators, a lot of accelerator setup and re-adjustment has to be
made by operators during a beam time. This is typically done
manually using potentiometers and is very time-consuming.
With the FAIR project the complexity of the accelerator
facility increases further and for efficiency reasons it is rec-
ommended to establish a high level of automation for future
operation. Modern Accelerator Control Systems allow a fast
access to both, accelerator settings and beam diagnostics
data. This provides the opportunity to implement algorithms
for automated adjustment of e.g. magnet settings to maxi-
mize transmission and optimize required beam parameters.
The fast-switching magnets in GSI-beamlines are an optimal
basis for an automatic exploration of the parameter-space.
The optimization of the parameters for the SIS18 multi-
turn-injection using a genetic algorithm has already been
simulated [1]. The first results of our automatized online
parameter optimization at the CRYRING@ESR injector are
presented here.

INTRODUCTION
FAIR – the Facility for Antiproton and Ion Research – will

constitute an international center of heavy ion accelerators
that will drive forefront heavy ion and antimatter research.
The goal of the FAIR facility is to provide antiproton and ion
beams of unprecedented intensities as well as qualities. As a
special feature, the facility will provide a broad range of high-
intensity ion, antiproton and rare-isotope beams parallel to
multiple experiments.

The High Energy Beam Transport System of FAIR, with
a total length of more than 2350 meters, forms a complex
system connecting seven accelerator- and storage rings, the
experiment caves, beam dumps, stripping stations, the an-
tiproton target and the Super Fragment Separator. The vari-
ety of beams to be transported is considerable, ranging from
slow extracted beams with long spills of up to 100 s to short
intense bunches with lengths of a few nanoseconds and mo-
mentum spreads of up to ±1%. The range of beam intensity
covers more than six orders of magnitude [2]. The complex-
ity of the FAIR facility demands a high level of automation
for future operation, because otherwise the anticipated man-
power requirements for operators would be excessive, as
shown in [3]. Modern accelerator control systems allow
a fast access to both, accelerator settings and beam diag-
nostics data. This provides the opportunity to implement
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Figure 1: The settings of the steerers and electrostatic
quadrupoles between ion source and Farady Cup after the
dipol of CRYRING@ESR injector at GSI have been autom-
atized optimized with evolutionary algorithm to maximize
the beam transmission.

algorithms for an automated adjustment. An automatized
machine based optimization using genetic algorithms for
a storage ring has been already successfully demonstrated
experimentally [4].
In the frame of the Swedish in-kind contribution to the

FAIR project the storage ring CRYRING@ESR is planned
to be used for experiments with low-energy ions and antipro-
tons. The ring is already installed in the existing GSI target
hall and commissioning has started in 2015 [5, 6]. Since
CRYRING@ESR has its own local injector it can be used
stand-alone for testing novel technical developments like
automatized configuration of beam line devices. Figure 1
shows the part of the CRYRING@ESR injector (from ion
source to Faraday Cup), which has been used for testing
automatized online genetic algorithm optimization. A semi-
automatized optimization has been already preformed at the
CRYRING in Sweden [7].

GENETIC ALGORITHMS
Genetic algorithms (GA) are inspired by natural evolution.

GA search for solutions using techniques such as selection,
mutation and crossover. By employing a wide range of
different algorithms, GA are very flexible and can be adapted
to a large range of different problems.

In GA terminology, a solution vector is called an individ-
ual and represents a set of variables; one variable is a gene.
A group of individuals form a population, the following child
populations are counted in generations. The first popula-
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tion is created randomly. The crossover operator exchanges
variables between two individuals - the parents - to discover
with their offspring promising areas in the solution space
(exploration). For the optimization within a promising area,
the mutation operator changes randomly the characteristics
of individuals on the gene level (exploitation). Reproduc-
tion of individuals for the next generation involves selection.
The fitness of an individual reflects how well an individual
is adapted to the optimization problem and determines the
probability of its survival for the next generation. The fitness
is evaluated by an objective function, by a simulation code
or by a real running system. During the single-objective
optimization the most promising individuals are chosen to
create the next generation. By allowing individuals with
poor fitness to take part in the creation process the popula-
tion is prevented to be dominated by a single individual. The
most popular techniques are proportional selection, ranking
and tournament selection [8–10].
A careful choice of the algorithm and operator is neces-

sary to get the best performance of GA algorithms. The op-
timal choice of the offspring production probability through
crossover or mutation is important for a proper balance be-
tween exploration and exploitation. The mutation operators
are mostly used to explore, which is preferred at beginning
of the search process. On the other hand, at the end of search
process more exploitation through the crossover operators is
needed to ensure convergence of the population. According
to these facts, an incorrect production probability can lead
to local optimum convergence.

To overcome the GA optimization slowness in the simula-
tion (many different parameter settings need to be evaluated),
parallel computing techniques are used. For an automatic
optimization of real machine this advantage is not available.
On the other hand an automatized configuration would in-
stantly adapt to errors sensitive to the adjustment parameters
as well as other technical influences. An automatic opti-
mization of the transmission is possible if a pre-conditioned
initial generation, a smaller number of individuals and gen-
erations can be used to shorten the optimization time. Very
important for this kind of an automatic optimization is a
fast reaction of the beam line devices as well as a fast and
accurate beam diagnostic. For a short optimization within a
few minutes a single cycle of setting beam line parameters
and reading out detector values should not be longer than
two seconds.

SIMULATION
The CRYRING@ESR injector model has been imple-

mented in the particle tracking code pyORBIT - the python
implementation of ORBIT (Objective Ring Beam Injection
and Tracking) [11]. For the GA optimization the Distributed
Evolutionary Algorithms in Python (DEAP) [12] together
with pyORBIT has been used. DEAP includes evolution
strategies, multi-objective optimization, and allows the devel-
opment of new genetic algorithms. DEAP decouples the GA
operators like crossover from the evolutionary algorithms,

Figure 2: Simulated transmission evolution with the (µ +
λ)-algorithm for different population sizes for a beam line
with four quadrupoles. It has been assumed a single beam
line cycle is two seconds long.

which allows for example to easily exchange the selection
operator and leave the remaining algorithm unchanged.

Simulations indicated the (µ + λ)-evolutionary algorithm
from the DEAP python package would be the perfect can-
didate for a rapid automatic optimization. In the (µ + λ)-
algorithms as first step the individual fitness of µ-individuals
are evaluated. µ is the population size and λ the offspring’s
size. Secondly, the evolutionary loop begins by producing
λ < µ-offspring’s from the population through crossover
and mutation. The offspring’s are then evaluated and the
next generations population is selected from both the off-
spring’s and the current population. Finally, when a given
number of generations has been evaluated, the algorithm
returns the final population including the best solution [12].
In simulation the (µ + λ)-algorithm could sufficient optimize
the transmission of a beam line with four quadrupoles after
10 generations using a small population of 100 individuals
and offspring size of 50, presented in Figure 2. Assuming
a single beam line cycle is two seconds long, an automatic
optimization would last 15 minutes.
As a result of the promising GA optimization simula-

tion outcome of a beam line and multi-turn injection pre-
sented in [1] the Parameter Evolution Project (PEP) has been
launched for automatized online parameter optimization in
beam lines.

EXPERIMENT
Currently most of the GSI facility is undergoing heavy

construction work or large up-grade measure and is therefore
not available for beam time until 2018. An exception is the
CRYRING@ESR and its local injector beam line. Since the
CRYRING@ESR has just recently been installed at GSI, the
infrastructure follows the guidelines of a modern accelerator
control system and allows a fast access to both, accelerator
settings and beam diagnostics data. GSI has selected the
CERN Front-End Software Architecture (FESA) to operate
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accelerator devices and LSA-Database for the new control
system. A lightweight python interface to FESA for the de-
velopment of novel ideas, fast and easy, is available. The
slow response of the CRYRING@ESR injector electrostatic
quadrupoles of a few seconds is a disadvantage for testing
evolutionary algorithm optimization and resulted in a cycle
time longer than five seconds. An enhancement of electro-
static devices response is maybe possible in the future.
The aim of the optimization was to maximize the beam

transmission through the beam line. During the genetic al-
gorithm optimization the parameters on which the beam
transmission depends were altered in consideration of the
limiting technical and physical conditions. The algorithm
allows independent variation of the steerer strengths and
electrostatic quadrupoles voltages, in total nine different
parameters. The 90◦-Dipole shown in Figure 1 has been
excluded from the genetic algorithm optimization due to
is low transmission influence. The beam current has been
measured at the current transformer behind the ion source
and the Faraday cup after the dipole. Unfortunately, due to
lack of time the current transformer has not been calibrated.
Still without calibration the measurements from the current
transformer could be used as reference in the transmission
optimization process. Because of the slow response of the
electrostatic devices, a holding period of five seconds before
the readout of the beam diagnostic devices has been included.
The result of the first successful evolutionary algorithm’s op-
timization performed at GSI is presented in Figures 3 and 4.
The population evolution has been limited to five generation
in order not to exceed an optimization time of 30 minutes.
Fortunately, during the optimization beam current fluctua-
tion from the CRYRING@ESR source has been low. Even
in the first generation a similar transmission as with a manual
optimization could be reached, since the parameter space of
the first generation has been limited to ±10% of the known
optimal settings. As the next population is selected from
both the offspring’s and current population the number of
fitter individuals grows with generations. Nevertheless, the
generated and evaluated offspring covers a large parameter
space indicated through different beam currents.

CONCLUSION AND OUTLOOK
As a result of the promising simulation outcome of op-

timizing the multi-turn injection as well as beam lines, the
PEP Project has been launched. The first automatic PEP ver-
sion at the CRYRING@ESR injector has been implemented
and tested. A good transmission could be reached in half
an hour of optimization time. Still, the PEP Project is at
its beginning and many improvements as well as detailed
studies have to be made. The influence of population, gen-
eration size, crossover and mutation should be studied as
well as other genetic algorithms, particle swarm algorithms
or machine learning algorithms should be tried. Before the
parameter space can be expanded, some trigger must be
included like ‘measurement failed and has to be repeated’
and ‘Set value of devices have been reached’. Crucial for

Figure 3: Evolution of the population fitness represented
through beam current along generations. As the next pop-
ulation is selected from both the offspring’s and current
population the number of fitter individuals grows with gen-
erations.

0.9
1.0
1.1

 [a
rb

.]
Current Transformer

Population generation0

2

4

6

8

Fa
ra

da
y 

cu
p 

cu
rre

nt
 [

A] 1st 2nd 3rd 4th
Offsprings

Figure 4: The offspring’s fitness represented through beam
current along generations. Only the best offspring’s replace
parents in the next population. The measurements from the
uncalibrated current transformer are in arbitrary units, still
show the low ion source fluctuations.

the transmission is an optimization of beam size as well as
position and must therefore be included. For the GSI beam
time in 2018 it is planned to test PEP at the transfer channel
to SIS18 for optimizing the injection.
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