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Abstract

Except at the lowest beam energies, the one dimensional

treatment of coherent synchrotron radiation (CSR) originally

developed by Saldin [1] is an efficient and reasonably accu-

rate way to simulate the effects of CSR on a particle beam.

A possible problem with standard implementations of the

1D CSR formalism is that these implementations assume

that the beam centroid is close to the reference trajectory that

defines the lattice. In this paper, the one dimensional treat-

ment is extended to take into account beams whose centroid

is far from the reference trajectory and an example using

the Cornell-BNL Fixed Field Alternating Gradient (FFAG)

accelerator CBETA is given.

INTRODUCTION

Coherent synchrotron radiation (CSR) is a potential factor

limiting the minimum transverse emittance achievable in

accelerators [2] as well as possibly leading to micro bunch-

ing instabilities [3]. It is thus important to include CSR

effects in simulations of present and future machines such

as energy recovery linacs (ERL), free electron lasers, and

low emittance light sources [4].

At very low energies, the space charge forces have been

modeled successfully using particle-in-cell codes such as

IMPACT-T [5] and OPAL [6]. While accurate, execution

times for these codes can be long so, at higher energies, a

1-dimension CSR model has been developed based upon the

work of Saldin [1]. This 1-dimensional model is computa-

tionally much faster and gives good results [7] as long as

the beam shape obeys certain restrictions. For example, the

transverse beam size σ⊥ must satisfy σ⊥ � R(σz/R)2/3

where R is the bending radius and σz is the longitudinal

beam size. This 1-dimensional model has been incorporated

into a number of simulation packages including Elegant [8],

IMPACT-T [5], and Bmad [9].

The 1-dimensional CSR model allows the beam particles

to travel in 3D. However, when the CSR kick is calculated,

the particles are projected onto a 1-dimensional reference

trajectory. Typically, the reference trajectory used for the

CSR calculation has been the reference orbit used to define

the placement of the lattice elements. This choice is com-

putationally convenient since the lattice reference orbit is

typically made up of a series of straight lines and arcs of

circles.

The drawback of using the lattice reference orbit for the

CSR computation occurs when the beam centroid orbit is

far from the lattice reference orbit. In this case, the CSR

computation can be inaccurate due to differences between
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the actual curvature of the beam orbit and the curvature of the

lattice reference orbit. Situations where the beam centroid

is far from the lattice reference orbit occur in Fixed Field

Alternating Gradient (FFAG) accelerators where the beam

can go through lattice elements several times on different

trajectories. In such a case there may be no one lattice

reference orbit that is simultaneously near all the different

beam trajectories.

To get around this problem, the CSR calculation in the

Bmad simulation toolkit [10] has been modified to use an

orbit near the beam centroid orbit as the CSR reference orbit.

As an added benefit, the new CSR calculation is less singular

in nature and therefore easier to implement.

This paper outlines the beam centroid based 1-

dimensional CSR calculation and its application to the

Cornell-BNL ERL-FFAG Test Accelerator (CBETA).

ANALYSIS

The kick K a particle of a beam feels due to the field of

another particle is divided into two pieces [9]

K = KCSR + KSC (1)

where KSC is the kick that would result if the particles were

moving without acceleration along a straight line and KCSR,

the CSR kick, is essentially defined as K − KSC. The analy-

sis of KCSR projects the particles of a bunch onto the CSR

reference trajectory, the construction of which is described

later. The analysis assumes that the CSR reference trajectory

lies in a plane. Figure 1 shows the geometry. A “source”

particle (red dots) is, at any given time, a distance z behind

the “kicked” particle (blue dots). The radiation from the

source particle at point P′ and time t ′ interacts at some later

time t with the kicked particle at point P. L is the vector

from P′ to P and Ls is the distance along the CSR reference

trajectory from P′ to P.

Time = t

P’
PL

Ls

k
s

z

Time = t’

L(s)

Figure 1: CSR calculation geometry. A “source” particle

(red dots) is a distance z behind the “kicked” particle (blue

dots). The radiation from the “source” particle at point P′

and time t ′ interacts at some later time t with the kicked

particle at point P.
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Figure 2: A) Section of the Cornell CBETA arc built out

of Halbach magnets. B) Closeup of the four orbits in the

CBETA arc for the four beams of differing energy.

The energy variation dE/ds due to the longitudinal com-

ponent of the CSR kick is written as(
dE

ds

)
CSR

=

∫
∞

−∞

ds
′

dλ(s′)

ds′
ICSR(s − s

′) (2)

where λ(s) is the bunch line charge density and

ICSR(s − s
′) = −

∫
s′

−∞

ds
′′

KCSR(s − s
′′) (3)

Saldin et al. [11] gives a formula (Eq. (10)) for ICSR

ICSR = re m c
2

(
1

γ2 z
−

2

L

1 + γ2 θs (θs + θk )

1 + γ2 θ2s

)
(4)

where θs is the angle between the L vector and the velocity

vector of the source particle at position P′ and θk is the

angle between the L vector and the velocity vector of the

kicked particle at position P. Here re is the classical electron

radius and mc2 is its rest energy. The problem with the above

equation is that even though ICSR remains finite, for small z,

and hence small L, the two terms in parentheses diverge to

infinity as z approaches zero. Thus Eq. (4) is not suitable for

arbitrary orbits where analytic equations cannot be derived.

To get around this, z is computed using

z = Ls − β L =
L

2 γ2
+ εL (5)

where β is the normalized velocity of the particles which

is assumed to be constant, the high energy approximation

1 − β = 1/2 γ2 has been made, and

εL ≡ Ls − L (6)

Using this in Eq. (4) gives

ICSR = −rem c
2

(
2 εL

z L
+

2

L

γ2 θs θk

1 + γ2 θ2s

)
(7)

The trick here is to not evaluate εL using Eq. (6) but rather

to compute it using a small angle approximation

εL �
1

2

∫
s
P

s
P′

θ2
L

(s) ds (8)

where θL (s) is the angle between L and Ls as shown in

Fig. 1. The error in εL is fourth order in the angles and so

can be ignored. At small z, L, θL , θs , and θk scale linearly

with z. Hence εL scales as z3 so the two terms on the RHS

of Eq. (7) are both well behaved as z approaches zero.

IMPLEMENTATION

The above algorithm for simulating the longitudinal CSR

effect has been implemented as part of the Bmad [10] sub-

routine library for relativistic charged-particle and X-ray

simulations in place of the old algorithm [9]. The trans-

verse CSR calculation and the longitudinal space charge

calculation as outlined in [9] remain unchanged in Bmad.

To establish a CSR reference trajectory that is near the

beam centroid orbit, before any tracking of a beam is done,

a single particle is tracked through the lattice with the parti-

cle’s initial position at the start of the lattice matching the

beam’s centroid position there. From this, a piece wise lin-

ear reference line is defined by connecting, with straight line

segments, all of the points where this particle’s trajectory

intersects an element boundary. This defines a coordinate

system in which the CSR reference trajectory is constructed.

The CSR reference trajectory in any given element is then

defined by a cubic spline with respect to the piece wise linear

reference line with coefficients of the spline determined by

the tracked particle’s trajectory at the edges of the element.

For elements like wigglers and undulators, where a single

spline fit may be inaccurate, the element can be split into

sub-element sections.

When evaluating the integral for εL (Eq. (8)), The L vector

could be used as the s-axis of the integration. This would

involve some computational overhead since the L vector

varies as z and P are varied. Instead, the piece wise linear

reference line that is used to construct the CSR reference

trajectory is also used as the integration axis.

The charge distribution is divided up into a number of

bins and is smoothed by taking the charge distribution for

each particle to be triangular with a finite width as described

in [9]. For a given kick point P, and a given value of z,

the source point P′ is found using Eq. (5) using an implicit

search as outlined in [9].

FFAG EXAMPLE

The Cornell CBETA machine, currently under construc-

tion [12], will be the first ever Energy Recovery Linac (ERL)

based on a FFAG lattice. This non-scaling FFAG will have
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Figure 3: A) CBETA FFAG arc lattice using offset quadrupole magnets to bend the beam and patch elements to curve the

lattice reference line. B) A close approximation to the FFAG arc lattice for the 42 MeV beam using combined-function (CF)

bending magnets. Top plots: The physical layout and 42 MeV orbit. Middle plots: The beta functions. Bottom plots: The

vertical magnetic field along the orbit.

four accelerating passes through the linac and 4 decelerating

passes. The FFAG arc will have to handle beams at four dif-

ferent energies (42 MeV, 78 MeV, 114 MeV, and 150 MeV)

traveling along four different paths as shown in Fig. 2.

Figure 3A shows the CBETA FFAG arc cell which uses

Halbach magnets to bend the beam and “patch” elements

which reorient the reference trajectory to follow the bend of

the arc. These magnets can be reasonably modeled as shifted

quadrupole magnets. The patch elements create a kinked

reference orbit where the reference orbit tangent vector is

discontinuous. Here the orbit is well-off the reference axis.

For use as a comparison, Fig. 3B shows an “equivalent”

FFAG arc lattice but here combined-function (CF) bending

magnets are used to get the lattice reference orbit close to

the orbit of the 42 MeV beam which is the beam used in the

simulation.

Figure 4 shows the longitudinal phase space after tracking

a bunch through 10 cells of the FFAG arc using both the old

New CSR Calc w/ FFAG Arc lattice

New CSR Calc w/ CF Bend lattice

Old CSR Calc w/  FFAG Arc lattice 

Old CSR Calc w/ CF Bend lattice 
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Figure 4: Longitudinal phase space after tracking a bunch

through 10 cells of the two lattices using both the old and

new CSR algorithm.

and new implementations of CSR in the Bmad library. The

electron bunch has 77 pC of charge and an RMS duration of

3 ps at an average energy of 42 MeV. On the scale of this plot,

the initial relative energy deviation δ is negligible. The blue

curve shows the results of the new CSR implementation in

the FFAG arc lattice (3A). The red curve shows the results of

the new CSR implementation in the comparison CF bending

magnet lattice. Because the bending felt by the beam is

nearly the same in the two lattices, it is expected that there

would be little difference in the results. And indeed, since

the phase space distributions for tracking in both lattices are

virtually identical, this shows that the new algorithm is able

to handle off-axis beams.

Also shown in Fig. 4 is the final phase space distributions

as calculated by the old CSR algorithm. For the CF bend

lattice the old and new CSR calculations are in excellent

agreement. On the other hand, the old CSR calculation with

the FFAG arc lattice shows virtually no energy deviations be-

cause there are no bend magnets in this lattice. The old CSR

calculation was not designed to handle a kinked reference

orbit and hence ignores the kinks in the FFAG lattice. There

is no way to remedy this for the old calculation because the

CSR kick becomes infinite at a kink.

CONCLUSION

The new formulation for the kick integral ICSR (Eq. (7))

has terms that are not singular in the limit as z approaches

zero and thus Eq. (7) can be used with “arbitrary” plainer

CSR reference orbits. This allows the use of a CSR refer-

ence orbit that is close to the beam centroid orbit enabling

simulation of CSR in lattices where the beam centroid is far

from the lattice reference orbit.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB076

05 Beam Dynamics and Electromagnetic Fields
D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments

ISBN 978-3-95450-182-3
3889 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



REFERENCES

[1] E. L. Saldin, E. A. Schneidmiller and M. V. Yurkov, “ On the

coherent radiation of an electron bunch moving in an arc of a

circle”, Nuc. Instrum. Methods Phys. Res. A, 398, 373—394,

(1997).

[2] H. H. Braun, R. Corsini, L. Groening, F. Zhou, A. Kabel, T.

O. Raubenheimer, R. Li, and T. Limberg, “Emittance growth

and energy loss due to coherent synchrotron radiation in a

bunch compressor”, Phys. Rev. ST Accel. Beams 3, 124402

(2000).

[3] S. Heifets, G. Stupakov, and S. Krinsky, “Coherent syn-

chrotron radiation instability in a bunch compressor,” Phys.

Rev. ST Accel. Beams 5, 064401 (2002).

[4] J. Qiang J. Corlett, C. E. Mitchell, C. F. Papadopoulos, G.

Penn, M. Placidi, M. Reinsch, R. D. Ryne, F. Sannibale, C.

Sun, M. Venturini, P. Emma, and S. Reiche., “Start-to-end

simulation of x-ray radiation of a next generation light source

using the real number of electrons”, Phys. Rev. ST Accel. &

Beams 9, 044204 (2006).

[5] J. Qiang, S. M. Lidia, R. D. Ryne, and C. Limborg-Deprey,

“Three-dimensional quasi static model for high brightness

beam dynamics simulation”, Phys. Rev. ST Accel. Beams 9,

044204 (2006).

[6] Y. J. Bi, A. Adelmann, R. Dolling, M. Humbel, W. Joho, M.

Seidel, and T. J. Zhang, “Towards Quantitative Simulations

of High Power Proton Cyclotrons.”, Phys. Rev. ST Accel.

Beams, 14:054402, (2011).

[7] Chad E. Mitchell, Ji Qiang, Robert D. Ryne, “A fast method

for computing 1-D wakefields due to coherent synchrotron

radiation”, Nuc. Instrum. and Methods in Phys. Research A

715 119—125 (2013).

[8] M. Borland, “A Simple Method For Simulation Of Coherent

Synchrotron Radiation In A Tracking Code” 6þInternational

Comp. Accel. Phys. Conf., ICAP 2000, (2000).

[9] D. C. Sagan, G. H. Hoffstaetter, C. E. Mayes, and U. Sae-

Ueng, “Extended one-dimensional method for coherent syn-

chrotron radiation including shielding”, Phys. Rev. ST Ac-

cel.& Beams, 12, 040703, (2009).

[10] D. Sagan, “Bmad: A relativistic charged particle simula-

tion library,” Nuc. Instrum. and Methods in Phys Research

A 558, 356–359 (2006). http://www.lepp.cornell.

edu/~dcs/bmad

[11] E. L. Saldin, E. A. Schneidmiller and M. V. Yurkov, “Radia-

tive interaction of electrons in a bunch moving in an undu-

lator”, Nuc. Instrum. Methods Phys. Res. A, 417, 158—168,

(1998).

[12] C. Mayes, ed., “CBETA Design Report” (2017). To be

published.

https://www.classe.cornell.edu/Research/ERL/

CBETA.html

THPAB076 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3890Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D05 Coherent and Incoherent Instabilities - Theory, Simulations, Code Developments


