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Abstract
The Fermilab Muon g–2 Experiment (E989) contains flat-

plate electrostatic quadrupoles, curved with the reference tra-
jectory as defined by the constant, uniform magnetic dipole
field. To understand the beam behaviour at a sufficient level,
we require fast, high-accuracy particle tracking methods for
this layout. Standard multipole fits to numerically-calculated
2D transverse electric field maps have provided a first ap-
proximation to the electric field within the main part of the
quadrupole, but cannot model the longitudinal curvature or
extended fringe fields of the electrostatic plates. Expressions
for curvilinear multipoles can be fit to a 2D transverse slice
taken from the central point of a numerically-calculated 3D
electric field map of the quadrupole, providing a curved-
multipole description. Generalised gradients can be used
to model the fringe field regions. We present the results
of curvilinear multipole and generalised gradient fits to the
curved quadrupole fields, and the differences in tracking
using these fields over 200 turns of a model of the storage
ring in BMAD.

INTRODUCTION
The E989 Muon g–2 Experiment at Fermilab will use

statically charged electrodes to focus the antimuon beam
as it circulates a storage ring in a highly-uniform magnetic
dipole field.
The electrodes, while flat in the transverse plane, follow

the curvature of the design orbit [1]. They are positioned
50mm from the design orbit on the vertical (±y) and hori-
zontal (±x) sides of the vacuum chamber. The purpose is
to produce a skew quadrupole field across the storage re-
gion (

√
x2 + y2 ≤ 0.045m), with the horizontal defocussing

counteracted by the weak focusing of the magnetic dipole.
Half of the 8 quadrupoles each cover 26 degrees azimuth
and the remaining half each cover 13 degrees azimuth.

The flat nature of the plates produces high-order multipole
components, while the curvature with the orbit suggests that
a “curvilinear multipole” expansion would be most suitable
to describe the field produced.
Electrostatic plates have the feature of charge accumu-

lation at the plate edges, thus not only do the higher-order
multipoles play a significant role, but the fringe fields are
also enhanced. This reduces the applicability of a multi-
pole fringe description for the fringe fields, as it does not
reproduce this phenomenon. The method of generalised
∗ This research was funded by the STFC Cockcroft Institute Core grants
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gradients [2] can model static fields which vary along the
longitudinal direction.

METHOD
Bulk Field Modelling

The bulk electric field (in the region within the quadrupole
where there is no longitudinal field and transverse field com-
ponents have uniform values, taken here as excluding only
1 degree of azimuth at each end of each quadrupole) is mod-
elled with a curvilinear multipole expansion [3–5] in the
BMAD accelerator modelling library [6]. Two potentials
can be found to satisfy the relevant Laplace equation, repre-
senting the normal and skew multipoles:

φren = −

flr(n/2)∑
p=0

(iY )2p

n

(
n
2p

)
Fn−2p(R)

φimn = −

flr( n−1
2 )∑

p=0

Y (iY )2p

n

(
n

2p+1

)
Fn−2p−1(R)

where the binomial coefficient notation (nr ) has been used,
flr is the floor function and R and Y describe the transverse
particle position in global ring (cylindrical) coordinates,
normalised to the ring radius ρ = 7.112m.

The functions Fp(R) can be expressed as:

Fp(R) =
flr(p/2)∑
n=0

R2n (
αp,n log(R) + βp,n

)
(1)

with coefficients αp,n and βp,n satisfying:

α0,0 = 0, β0,0 = 1; α1,0 = 1, β1,0 = 0;

αp>1,0 = (p2 − p)
flr(p/2)∑
n=1

αp-2,n-1 − 2nβp-2,n-1
4n2 ,

βp>1,0 = (p2 − p)
flr(p/2)∑
n=1

αp-2,n-1 − nβp-2,n-1
4n3 ;

αp>1,n>0 = (p2 − p)
αp-2,n-1

4n2 ,

βp>1,n>0 = (p2 − p)
nβp-2,n-1 − αp-2,n-1

4n3 .

The electric field is defined in terms of these as:

E = −
∞∑
n=0

ρn
(
an∇φimn + bn∇φren

)
(2)

where the multipole coefficients an and bn were obtained
up to n= 12 by fitting a polynomial to Ey along the y-axis
for |y | ≤ 0.048m, while assuming only 4-fold and skew
multipole symmetries (i. e. assuming an = 0 = bodd).

Proceedings of IPAC2017, Copenhagen, Denmark THPAB055

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3837 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



Fringe Field Modelling
Modelling the fringe fields required fitting generalised

gradients to the radial field on a cylinder centred on the
design orbit (assumed straight) with r0 = 0.045m, then using
the methods described in [2, 7, 8]. Due to the quadrupole
geometry, the resulting field for this case can be written with
only skew components without the m = 0 (solenoid) term.
Defined using both cylindrical and Cartesian transverse

coordinates relative to the design trajectory (x, y, z and
r, θ, z), the field components thus have the form:

Ex =

∞∑
m=1

∞∑
l=0

(−1)lm!
22ll!(l + m)!

<[C[2l]m (z)]r
2l−2+m

×
(
(2l + m)x cos(mθ) + my sin(mθ)

)
Ey =

∞∑
m=1

∞∑
l=0

(−1)lm!
22ll!(l + m)!

<[C[2l]m (z)]r
2l−2+m

×
(
(2l + m)y cos(mθ) − mx sin(mθ)

)
Ez =

∞∑
m=1

∞∑
l=0

(−1)lm!
22ll!(l + m)!

<[C[2l+1]
m (z)]r2l+m cos(mθ)

where C[A]m = dACm/dzA are the fitted generalised gradients,
henceforth referred to as GGs.
Both the curvilinear multipole equations and the GG

fringe fields are implemented using calculated field maps,
imported to BMAD so as to be directly comparable with
results from tracking through the original field data. All
tracking has been done using an adaptive-step fourth-order
Runge–Kutta tracking algorithm, detailed in [9].

RESULTS
The field data was produced for a plate potential of

27.2 kV [10] (resulting in a field magnitude of approxi-
mately 1MVm−1 at the electrodes). The GG fit to the field
data agreed within the storage region to within 20 kVm−1

and 500 kVm−1 for the transverse/longitudinal fields respec-
tively, while the curvilinear multipole fit agreed to within
100 kVm−1. Plots of the residuals of the differences between
the model fields and original field data are given in Fig. 1
and Fig. 2.

A bunch of 975 on-momentum antimuons, randomly dis-
tributed in transverse phase space, was tracked around a
model of the g–2 storage ring 200 times, encountering all
8 quadrupoles on each.
The tracking was done, using the same starting bunch,

for cases with: the GG fringe fields with the curvilinear
multipole bulk field, the GG fringe fields with the original
bulk field data, the original fringe field data and curvilinear
multipole bulk field, and with the original fringe field and
bulk field data as a baseline. This was done so that each
bunch could be directly compared with that from the baseline
run.

Figure 1: Magnitudes of the differences between the original
field data and that reproduced from the curvilinear multipole
expansion, displayed in the transverse plane.

Figure 2: Differences between the original field data and
that reproduced from the GGs for the radial (upper) and
longitudinal (lower) components, taken on the surface of a
cylinder of radius r0 = 0.045m centred on the design orbit.

To quantify these differences, the bunch emittances εx ,
εy and εz were calculated for each case, as were the lattice
tunes and beta functions. The results for the different runs
are listed in Table 1.
It was found that using the GG fringes introduced some

marginal (approximately 0.2%) differences in the lattice
parameters as compared to the baseline. However, using
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Table 1: Lattice parameters and bunch emittances after track-
ing for the different cases (G for cases involving GG fringe
fields and M for cases involving the curvilinear multipole
bulk field).

Case νx νy β†
x β†

y ε∗x ε∗y ε?z

Base .9159 .4116 8.020 16.81 19.51 8.599 32.23
G .9161 .4108 8.018 16.85 19.51 8.598 4.170
M .9164 .4049 8.014 17.11 19.51 8.675 31.75
GM .9165 .4039 8.013 17.15 19.54 8.680 4.186
GSt .9167 .4036 8.011 17.17 19.40 8.605 4.201

†Units: m, ?Units: mm, ∗Units: µm
the curvilinear multipole introduced substantially greater
differences of approximately 2%.

Due to this, a further case was studied involving GG fringe
fields and a straight multipole representation of the bulk field,
fit to the field data using the method outlined in [11]. This
fit agreed with the field data to within 6 kVm−1 within the
storage region. The results for this are also displayed in
Table 1 under “GSt”.

The phase spaces after each run were also plotted and
compared to the baseline. The transverse phase spaces over-
lapped very well (as could be expected by the agreement in
emittance in Table 1).
However, it was found that the longitudinal phase space

was substantially affected by the GG fringe fields. As sug-
gested by the approximately 8-fold decrease in emittance,
the momentum spread was reduced, as can be seen in Fig. 3.
This effect was observed only for the cases using the GG
fringe fields.

Figure 3: Longitudinal phase space after tracking for the
baseline (blue) and for the GG fringes with original bulk
field data (orange).

CONCLUSION
It is suggested that the inaccuracy of the curvilinear multi-

pole fit in Fig. 1 is due to the fitting method being limited to a
single axis. The improved accuracy of the straight multipole
fit is not reflected in the lattice functions, where it exhib-
ited poorer agreement with the baseline than the poorly-fit
curvilinear multipole. Further research in to methods of
fitting curvilinear multipoles is needed before strong conclu-
sions can be drawn on its accuracy as a modelling method,
although it has given promising results in this investigation.

The deviations in δ between tracking with and without
the GG fringes is a further curiosity. This must also be
investigated further, and whether the momentum of stored
particles show similar behaviour in reality is unknown.
The large deviations in Ez between the GG fringe fields

and the original field data appear to cancel sufficiently well,
as otherwise the z coordinate of the particles would be sig-
nificantly affected. The suggested cause of the difference
in field from the original field data is that the fit is only per-
formed up to l = 2, meaning that the longitudinal variation
in the field may be being limited.
Overall, the method of fitting generalised gradients to

fringe fields has been successful, as no significant deviations
in tracking results have been observed as compared to the
original field data. Increasing the order in m may improve
transverse field agreement, however improving the fit of
longitudinal field is the priority for further research, as it
may also remove the apparent difference in emittance. Once
satisfied with the generalised gradient representation, we can
calculate the corresponding Taylor maps to reduce tracking
times. With this, an in-depth investigation of the lost muon
systematic [12] can be performed.
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