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Abstract
This paper presents some results of Closed-Orbit Bilinear-

Exponential Analysis (COBEA), an algorithm designed to

decompose (coupled) response matrices into betatron tunes

and other optical parameters at beam position monitor and

corrector positions. The only additional information strictly

required by the algorithm is the ordering of monitors and

correctors along the storage ring beam path. The presented

method is largely lattice-independent, as no magnet strengths

or dimensions are needed, and converges in a reasonable

time interval due to usage of gradient-based optimization.

After describing key features of the algorithm, a set of

COBEA results is compared to LOCO results for the storage

rings of MLS and BESSY II. The paper is concluded by a

brief discussion of further applications, limits and further

development of the COBEA algorithm.

INTRODUCTION
It is known for a long time that orbit perturbations and

parameters of beam optics are closely related, and several

methods like [1–4], to name a few, exist to convert perturbed

orbits in storage rings into beam-optical information. The

presented approach aims at reconstruction of beam optical

parameters with a minimal set of assumptions, so that no

magnetic lattice model [1] is required. The main input to

the presented algorithm, an orbit response matrix r, can be

obtained by standard beam position monitors (BPMs) and

correctors; the remaining inputs are either available without

measurement (topology) or optional (drift space of known

length to normalize optical parameters). An implementation

of the algorithm is available [5].

THEORY
In the presented approach, the concept of complex eigenor-

bits is used, which is based on eigenvectors of one-turn

transfer matrices. This paper describes examples for the

decoupled response matrices, while a natural inclusion of

arbitrarily coupled transverse optics is possible [5, 6]. For

the decoupled case, the response matrix r is represented by

the Bilinear-Exponential model with dispersion [6] for one

mode

rmodel
jk = �

{
Rje−iS jkμ/2 A∗k

}
+ djbk . (1)

with Rj ∝
√
β(sj)eiφ(sj ) parameterizing optical functions at

BPM positions sj , Ak representing beam optics at corrector

positions s̃k , and the topology matrix Sjk = sign(sj − s̃k) ∈
{−1, 1}. This topology matrix can be computed from simple

knowledge of the order in which BPMs and corrector mag-

nets are installed along the beampath (no lengths required).

Furthermore, μ = 2πQ represents the fractional betatron

tune, dj is proportional to the dispersion orbit at sj , and bk
to dispersion coupling of the corrector k.

The goal is to find all of the above optical parameters

Rj, Ak, μ, dj, bk so that (1) is an optimal fit for a measured

response matrix r, with the additional input being the topol-

ogy matrix.

The presented approach consists of two separate steps. In

the first step, one tries to find approximate values for the

parameters in question. In the second step, these parameters

are optimized until a convergence criterion is reached.

Step 1: Splitting the ring
To obtain start values, one imagines the storage ring of

being composed of two linac-like segments, extending clock-

wise from BPM 1 to 3 and back from BPM 3 to 1; their ends

being connected by two doublets of BPMs (see Fig. 1). One

can obtain maps from one BPM doublet space (x1, x2)
T to

the other and vice versa, construct a one-turn matrix, and

find R1, R2 and μ by its eigendecomposition [6]. For this to

work, no transfer map has to be known in advance - one only

needs to make sure that correctors are located outside of the

mapped segment (using Sjk).
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Figure 1: Doublet (dark green) maps for the two linac-like

segments (green) are found using outside correctors (blue).

Knowing these parameters, one is able to compute all Ak

and all Rj from them using Corrector-Monitor mapping [6]

with the response matrix elements as input. This mapping

had previously been explored for use with turn-by-turn data

[7], but is now completely independent of it. Start values for

dispersion are created using Singular Value Decomposition

[8] on the remaining deviations [6]

The complete procedure is called Monitor-Corrector Sub-

space (MCS) algorithm [6]. As no special requirements were

stated for the two BPM doublets, they can be chosen almost
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arbitrarily in the ring, and testing multiple combinations can

increase the accuracy of the start values [6].

Step 2: Optimizing the solution
Up to this point, all model parameters depend on the ac-

curacy of only four BPMs. In addition, the MCS layer treats

the dispersion terms as perturbations. To further optimize

the solution, it is reformulated into a non-linear regression

problem between measured responses and the model (1)

χ2 =
∑
jk

(
rjk − rmodel

jk

)2

.

As this model does not require numerical tracking, one

can derive an analytical expression for the Jacobian and

gradient of χ2 [6]; this enormously accelerates the used

optimization procedure [9, 10]. Optimal parameters for all

optical parameters of the model are obtained. These can be

converted to other parameterizations including fit errors; the

full betatron tune can also be obtained by further computa-

tions [6].

APPLICATION TO MEASUREMENTS
A revised Python implementation of the COBEA algo-

rithm is available [5]. This code is used in the following to

re-evaluate some results obtained in [6]. The response matri-

ces and LOCO [1] comparison data for the storage rings of

MLS and BESSY II were generously provided by colleagues

of Helmholtz-Zentrum Berlin (HZB) [11].

In the present evaluation, the vertical (y) plane matrices

are analyzed without considering dispersion; this is different

to [6] and increases accuracy for the dispersion-free case;

other minor modifications which may slightly influence the

result parameters within error margins have also been made

for the MCS layer .

All matrices analysed in the following are decoupled in

the sense of (1), although COBEA is also able to decompose

transversely coupled response matrices as was already shown

using the DELTA storage ring [6]. Also, a drift space of

known length was given as input for normalizing β values

[6, 11]. Please note that COBEA can only represent the

dispersion orbit up to a constant factor (bilinear term).

To judge the result by simple means, a fit quality F is

defined by

F2 =
1

χ2

∑
jk

r2
jk .

Analysis for Metrology Light Source data
The electron storage ring of the Metrology Light Source

(MLS) has a circumference of 48 m and maximum energy

of 630 MeV [12]. Input and comparison data for 28 BPMs

(transverse), 12 horizontal correctors and 16 vertical cor-

rectors was provided [11]. COBEA application in the hor-

izontal (x) plane results in a fit quality F = 123.7, a re-

sult obtained in ≈ 10 s on a typical PC due to the small

matrix size. COBEA’s estimate for the horizontal tune is

Q = 3.178 ± 0.007, which coincides with LOCO’s estimate

of 3.178. Optical results for BPMs for the horizontal plane

are shown in Fig. 2 in comparison with LOCO results.

Figure 2: Analysis of BPM optics parameters Rj with con-

version to Courant-Synder parameters, and dispersion dj for

MLS horizontal plane in comparison with LOCO predic-

tions.

For the vertical (y) plane, we obtain a fit quality of F =
112.5 and a tune Q = 2.231 ± 0.005, where LOCO predicts

2.239. The optical results are shown in Fig. 3.

Analysis for BESSY II data
The BESSY II synchrotron light source includes a storage

ring with a nominal beam energy of 1.7 GeV and a circum-

ference of 240 m [13]. Input and comparison data from 108

BPMs, 80 horizontal correctors and 64 vertical correctors

was provided [11]. Data from a non-functional BPM known

from previous analysis in [6] was removed.

The fit quality was F = 215.7 with a tune of Q = 17.847±

0.003 in the horizontal plane, LOCO yielding a tune 17.847,

both estimates coinciding within predicted COBEA error

margins. The x plane monitor results are shown in Fig. 4.

In the vertical plane, the fit quality is F = 343.9 with a tune

estimate of Q = 6.741 ± 0.001, where LOCO’s prediction

was 6.745.
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Figure 3: Same as Fig. 2 for the vertical plane. For this

plane, the model is chosen to neglect the dispersion term

djbk .

Figure 4: Analysis of BPM optics parameters Rj with con-

version to Courant-Synder parameters, and dispersion dj for

BESSY II x plane in comparison with LOCO predictions.

COMPARISON OF METHODS
Several algorithms for computation of optical parameters

from measured orbits, either closed or by transient exci-

tation, exist. In the following, COBEA is compared to a

non-exhaustive list of such algorithms.

Linear Optics from Closed Orbits
The LOCO algorithm [1] essentially fits a full magnetic

lattice model to a measured response. While this also allows

for evaluation of optical functions continously along the ring,

it is built on all assumptions inherent in the used lattice model

and selection of its dependent variables for optimization.

In contrast, COBEA uses a minimal, non-arbitrary set of

assumptions in its closed-orbit model, which gradient can

be evaluated without numerical tracking.

Fast Phase Determination
The fast phase determination technique [2] has been found

to be a distant relative to the presented approach. However,

this technique posesses no start-value layer like the MCS

algorithm, and thus depends on proper initial values which

are typically provided from an existing lattice model. Its

(projection-based) optimization procedure is polar-bilinear,

and can thus not optimize betatron tunes. Also, dispersive

effects are neglected, and the input matrices must be trans-

versely decoupled.

Model-Independent Analysis
In the following, MIA is discussed in its use on turn-by-

turn BPM input data from storage rings [3]. By its statistical

nature, MIA (in its basic implementation) is fully indepen-

dent of a lattice model, including BPM-corrector order. This

increased flexibility comes at the price of full dependence

on turn-by-turn capable BPMs, additional hardware that is

not or only partially available at a large number of storage

rings.

CONCLUSION AND OUTLOOK
It has been demonstrated that COBEA can be used to

decompose response matrices into optical parameters, given

the ordering of the respective BPMs and correctors along

the beam path as additional information [6]. COBEA can

in principle also be used to clean measured response ma-

trices from noise [6,14], and the use of its model for orbit

correction is investigated [14].

With COBEA being available [5], we hope to contribute

a useful tool to obtain optical parameters from response

matrices at other storage rings.
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