Interplay of Beam-beam, Lattice Nonlinearity, and Space Charge Effects in the SuperKEKB Collider

Demin Zhou

Accelerator theory group, Accelerator laboratory, KEK

IPAC 2015, Richmond, Virginia, USA May 06, 2015

Outline

- Introduction
- Beam dynamics issues
 - Beam-beam (BB)
 - Lattice nonlinearity (LN)
 - Space charge (SC)
- Interplay of BB, LN and SC
 - Baseline lattice
 - Detuned lattice
- Mitigation schemes
 - Crab waist (CW)
 - Nonlinear optimization
- Summary and Future plans

Outline

Introduction

Beam dynamics issues

- Beam-beam (BB)
- Lattice nonlinearity (LN)
- Space charge (SC)

Interplay of BB, LN and SC

- Baseline lattice
- Detuned lattice
- Mitigation schemes
 - Crab waist (CW)
 - Nonlinear optimization
- Summary and Future plans

1. Introduction

T. Miura, TUYB1

K. Akai

1. Introduction: Scale SuperKEKB/KEKB

- Luminosity performance of SuperKEKB will be very sensitive to various imperfections/perturbations
 - Lattice nonlinearity, machine errors, collective effects, etc.

	LER			HER			
	SKEKB	KEKB *	Factor	SKEKB	KEKB *	Factor	
E(GeV)	4	3.5	1.14	7.007	8	0.876	
l₀(mA)	1.44	1.03	I.4	1.04	0.75	I.4	
ε _x (nm)	3.2	18	0.18	4.6	24	0.19	
ε _γ (pm)	8.64	180	0.048	12.9	240	0.054	
β _x *(m)	0.032	1.2	0.027	0.025	I.2	0.021	
β _y *(mm)	0.27	5.9	0.046	0.3	5.9	0.051	
a _p (10 ⁻⁴)	3.25	3.31	0.98	4.55	3.43	1.33	
σ _δ (ΙΟ-4)	8.08	7.73	1.11	6.37	6.3	0.96	

Outline

> Introduction

- Beam dynamics issues
 - Beam-beam (BB)
 - Lattice nonlinearity (LN)
 - Space charge (SC)
- Interplay of BB, LN and SC
 - Baseline lattice
 - Detuned lattice
- > Mitigation schemes
 - Crab waist (CW)
 - Nonlinear optimization
- Summary and Future plans

► Lum. tune scan for LER by BBWS

- By BBWS (weak-strong) w/o crab waist
- 'Sweet spot' close to half-integer
- Isolated islands for working point
- Important BB resonances:

$$2\nu_x - N\nu_s = \text{Integer}$$

 $\nu_x + 2\nu_y + N\nu_s = \text{Integer}$
 $\nu_x - \nu_y - \nu_s = \text{Integer}$

$$2\nu_y - \nu_s = \text{Integer}$$

- ► Lum. tune scan for HER
 - By BBWS (weak-strong) w/o crab waist
 - Better situation for HER

0.75

0.7

0.65

0.6

0.55

0.5

0.5

 $0.6 \quad 0.65$ Fractional v_x 0.7

0.55

Fractional v_y

• Island areas shrinks due to machine imperfections

0.75

> For SuperKEKB, most of the "intrinsic" LN are attributed to the IR resulting from extremely small $\beta^*_{x,y}$ and low emittances

• Nonlinear drift space near IP:

$$H = 1 + \delta - \sqrt{(1+\delta)^2 - p_x^2 - p_y^2}$$

• Fringe fields of final focus (FF) quadrupoles

• Large crossing angle (θ =0.083) => Deviation of solenoid axis from beam axis => Solenoid fringe fields

• Shift of FF quadrupoles downside to compensate dipole term from solenoid fields

 Rotation of FF quadrupoles around the beam axis to minimise the vertical dispersions and the X-Y couplings

- Chromaticity correction sextupoles
- Leakage fields to the HER from LER

- > DA limited by kinematic terms and FF quad. fringes:
 - K. Oide and H. Koiso, Phys. Rev. E47 (1993)
 K. Ohmi and H. Koiso, IPAC'10 (2010)

$$J_y \le \frac{\beta_y^{*2}}{(1+2|K|L^{*3}/3)L^*} A(\mu_y)$$

• FF quad. fringes of SuperKEKB are very strong and comparable to kinematic terms

• β^*_y is the key parameter for DA

Ring	β_{y}^{*} [µm]	K=k ₁ [m ⁻²]	L* [m]	J _y /A [µm]		
SuperKEKB HER	300	-3.1	1.22	0.018		
SuperKEKB LER	270	-5.1	0.76	0.032	▲ 1/20]
CEPC	1200	-0.176	1.5	0.76	= 1/20	- 1/100
TLEP(BINP design)	1000	-0.16	0.7	1.36		< 1/100
KEKB	5900	-1.779	1.762	4.22		

Y. Ohnishi

 High-order correctors added to each SC magnet
 IR is not transparent for off-momentum and largeamplitude particles

Y. Ohnishi

- > Poincare maps at IP
- **Baseline lattice: HER w/ solenoids**
 - Evidence of nonlinear X-Y coupling

- > Poincare maps at IP
- Baseline lattice: LER w/ solenoids
- Simplified lattice: LER w/o solenoids, FF magnets simplified:

no offset, no rotation, dipole and skew-quad removed

Linear tune shift

- Same level for SC and BB
- But have opposite signs

	Super	KEKB	KEKB		
	LER	HER	LER	HER	
٤ _x (nm)	3.2	4.6	18	24	
ε _y (pm)	8.64	11.5	180	240	
ξx	0.0028	0.0012	0.127	0.102	
ξγ	0.088	0.081	0.129	0.09	
Δv_x	-0.0027	-0.0004	-0.0005	-3E-05	
Δν _y	-0.094	-0.012	-0.0072	-0.0004	

- Vertical beam size and tune shift along the ring: LER
 - Uniform distribution of tune shift
 - Influence on matching conditions for optics design

FMA: SC drives the particles close to half-integer

• Weak-strong model for SC

W/O SCE

W/ SCE

4th order 5th order 6th order 7th order

H. Sugimoto

Outline

Introduction

- Beam dynamics issues
 - Beam-beam (BB)
 - Lattice nonlinearity (LN)
 - Space charge (SC)

Interplay of BB, LN and SC

- Baseline lattice
- Detuned lattice
- Mitigation schemes
 - Crab waist (CW)
 - Nonlinear optimization
- Summary and Future plans

- > DA and lifetime are sensitive to beam-beam interaction
 - Target Tousheck lifetime: 600 s for injection
 - LER: Significant loss of DA, 600 s => 90 s w/o optics optimization

Transverse aperture is reduced significantly.

Y. Ohnishi

► Tune survey of DA: LER

half-integer

- Good region near half-integer
- Chromaticity correction is very challenging with tune close to

Y. Ohnishi

FMA with beam distribution: $10\sigma_x \times 10\sigma_y$

Footprint in the tune space extended

BB+LN (LER)

BB+LN (HER)

20

FMA with beam distribution: $10\sigma_x \times 10\sigma_y$

Footprint in the tune space strongly distorted

BB+LN+SC (LER)

21

BB+LN cause significant lum. loss

> LER: Lum. loss is attributed to amplitude-dependent nonlin.

- Vertical emittance is very sensitive to beam-beam perturbation
- Hard to suppress
- Lum. loss starts from low currents (due to solenoids)
- ► HER: Lum. loss is attributed to chromatic nonlin.
 - Controllable if skew-sextupoles installed (KEKB experience)

► LER

- SC causes lum. loss, and loss rate depends on lattice design
- SC compensates BB effects at low currents
- Nonlinear fields from solenoids play an important role

3. Interplay: Detuned lattice

- Detuned lattice for Phase 2 of SuperKEKB
 - $\beta_x^* \times 4$ and $\beta_y^* \times 8$ for both LER and HER
 - Emittance coupling $\varepsilon_y/\varepsilon_x=1-2\%$

Parameters	symbol	Phase 2.x		Phase 3.x		
		LER	HER	LER	HER	unit
Energy	Е	4	7.007	4	7.007	GeV
#Bunches	n_{b}	2500		2500		
Emittance	ε _x	2.2	5.2	3.2	4.6	nm
Coupling	ϵ_y/ϵ_x	2	2	0.27	0.28	%
Hor. beta at IP	β_x *	128	100	32	25	mm
Ver. beta at IP	β _y ≉	2.16	2.4	0.27	0.30	mm
Beam current	$I_{\rm b}$	1.0	0.8	3.6	2.6	А
Beam-beam	ξ_{y}	0.0240	0.0257	0.088	0.081	
Hor. beam size	σ_x^{\diamond}	16.8	22.8	10	11	μm
Ver. beam size	σ_y *	308	500	48	62	nm
Luminosity	L	$1x10^{34}$		8x10 ³⁵		cm ⁻² s ⁻¹

Y. Ohnishi

3. Interplay: Detuned lattice: **BB+LN+SC**

Space-charge is not important

- SC compensates BB effects at low currents
- Lattice nonlinearity is not very important
- ► L=1×10³⁴cm⁻²s⁻¹ is promising
- ► L=10×10³⁴cm⁻²s⁻¹ is possible by increasing beam currents

Outline

Introduction

- Beam dynamics issues
 - Beam-beam (BB)
 - Lattice nonlinearity (LN)
 - Space charge (SC)
- Interplay of BB, LN and SC
 - Baseline lattice
 - Detuned lattice
- Mitigation schemes
 - Crab waist (CW)
 - Nonlinear optimization

Summary and Future plans

4. Mitigation schemes: CW

► CW for large crossing angle collision

• To mitigate the hourglass effects in x-direction

M. Zobov, Phys. Part. Nucl. 42 (2011) 782-799

4. Mitigation schemes: CW: Luminosity

- ► Lum. tune scan for LER by BBWS w/o and w/ CW
 - CW is the most promising scheme to suppress BB resonances
 - 'Sweet spot' for high lum. enlarged tremendously
 - Easy choice for working point
 - But CW causes loss of DA due to LN ...

4. Mitigation schemes: CW: Luminosity

$\blacktriangleright \text{ Ideal CW } (M = M_{CW} M_{BB} M_{CW}^{-1}):$

- In the ideal case, CW causes lum. gain of ~10% for SuperKEKB
- Its power is to sppress beam-beam driven resonances
- ► Real lattice w/ ideal CW:
 - Work at high currents, but not well at low currents

4. Mitigation schemes: CW: DA

DA: BB + ideal CW: LER

Stability of an initial amplitude in the horizontal and vertical plane.

Y. Ohnishi

4. Mitigation schemes: CW: Beam tail

Beam tail distribution: Ideal CW: LER

- CW not suppress beam tail well when LN exists
- Beam tail => Detector background => Collimation => Impedance

31

budget => Instability => Commissioning

SAD +weak-strong BB

4. Mitigation schemes: CW: DA

CW: Real lattice: LER

• Thin-lens model for CW sextupoles

4. Mitigation schemes: CW: DA

► CW: Real lattice: LER

- DA decreases when CW sextupole strength increases
- Nonlinearity between IP and CW sextuple breaks CW condition

Y. Ohnishi

4. Mitigation schemes: Nonlinear optimization

Nonlinear optimisation is a must for successful CW scheme

- Up to now, not very successful yet
- Advanced nonlinear analysis techniques are necessary
- An international collaboration program initiated

► SC compensation

- Linear tune shift compensation is not enough
- Amplitude-dependent tune shift also needs to be compensated:

installation of dedicated octupoles is a candidate

Outline

Introduction

- Beam dynamics issues
 - Beam-beam (BB)
 - Lattice nonlinearity (LN)
 - Space charge (SC)
- Interplay of BB, LN and SC
 - Baseline lattice
 - Detuned lattice
- > Mitigation schemes
 - Crab waist (CW)
 - Nonlinear optimization
- Summary and Future plans

5. Summary

Interplay of various issues

• Luminosity <= Emittance <= Beam-beam, Lattice nonlinearity,</p>

Space charge, Impedances, Electron cloud, Intra-beam scattering, etc.

BB+LN+SC+... => Dynamic aperture and lifetime => Beam

commissioning => Injection, Detector back ground, Alignments, etc. => Tolerances for hardwares => ...

6. Future plans

Detailed analysis of lattice nonlinearity under an international collaboration program

- Cornell Univ., IHEP, INFN, KEK, SLAC
- Collaboration with CEPC and FCC-ee teams
 - FCCs share similar accelerator physics challenges with SuperKEKB
- High-priority tasks
 - Global or local correction schemes for latt. nonlin.
 - SC compensation schemes
 - Better understand the interplay of BB and LN
 - More careful study for crab waist scheme

6. Future plans

➤ A recently initiated project: Benchmark studies for accelerator design codes

- SAD: TRISTAN, KEKB, SuperKEKB, J-PARC, ...
- Bmad: CESR, ERL, ...
- MAD/MADX: LHC, FCCs, DAφNE, Super τ-charm, ...

6. Future plans

A good step for benchmark of SAD and Bmad

• Twiss function and FMA for SuperKEKB LER

Acknowledgements

> Thanks to our collaborators for their contributions to this

talk, and/or for their constant supports and encouragements:

- BINP: E. Perevedentsev, E. Levichev, P. Piminov
- CERN: F. Zimmermann
- Cornell Univ.: D. Sagan
- IHEP: Y. Zhang
- INFN: M. Zobov, M. Biagini, B. Manuena, S. Guiducci, et al.
- KEK: K. Akai, E. Forest, A. Morita, H. Koiso, K. Ohmi, Y. Ohnishi, K.

Oide, H. Sugimoto, etc.

• SLAC: Y. Cai, A. Chao, G. Stupakov, et al.

Thanks for your attention!