

Improving the Energy Efficiency of Accelerator Facilities

Mike Seidel (PSI)

E.Jensen (CERN), R.Gehring (KIT), Th.Parker (ESS), J.Stadlmann, P.Spiller (GSI)

EuCARD² is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

Accelerator Efficiency - Outline

1) political picture of energy efficiency

- desire: sustainable energy: but insufficient storage; numerical examples of amounts of energy
- consequences for accelerator facilities
- work package EnEfficient within the Eucard-2 program

2) power flow in an accelerator

- major consumers in typical accelerator facilities
- conversion to secondary radiation: highest potential

3) examples of technical developments towards higher efficiency

- heat recovery
- efficient magnets
- efficient RF generation, s.c. cavities
- energy management

abstract

concrete

the energy problem

climate change and worldwide scarcity of resources cause critical reflections on the use of fossile energy carriers; nuclear power has other problems and is disputed energy cost will rise over medium timescales

- → improving efficiency is a strategy in many countries, affects also accelerator projects
- \rightarrow new accelerator projects and existing facilities must consider efficiency

Energy: Order of Magnitude Examples

generation	consumption	storage
1d cyclist "Tour de France" (4hx300W): 1.2kWh	1 run of cloth washing machine: 0.81kWh	car battery (60Ah): 0.72kWh
1d Wind Power Station (avg): 12MWh	1d Swiss Light Source (2.4GeV, 400mA): 82MWh	ITER superconducting coil: 12,5MWh
1d nucl. Pow. Stati. Leibstadt (CH): 30GWh	1d CLIC Linear Collider @3TeV: 14GWh	all German storage hydropower: 40GWh
1d Earth/Moon System E-loss: 77.000GWh	1d electrical consumpt. mankind: 53.000GWh	World storage hydropower: <i>O</i> (1.000GWh)
1d sunshine absorbed on Earth: 3.000.000.000GWh	1d total mankind (inc.fuels): 360.000GWh	

- 1.) accelerators are in the range were they become relevant for society and public discussion
- 2.) desired turn to renewables is an enormous task; storage is the problem, not production
- 3.) fluctuations of energy availability, depending on time and weather, will be large

networking EnEfficient, Eucard-2

Eucard: "European Coordination for Accelerator Research", cofunded by European commission, 2013...2017

EnEfficient: WP3, networking activity to stimulate developments, support accelerator projects, thesis studies etc.

task 1: energy recovery from cooling circuits, Th.Parker, A.Lundmark (ESS)

task 2: higher electronic efficiency RF power generation, E.Jensen (CERN)

task 3: short term energy storage systems, R.Gehring (KIT)

task 4: virtual power plant, J.Stadlmann (GSI)

task 5: beam transfer channels with low power consumption, P.Spiller (GSI)

links to all workshops on www.psi.ch/enefficient

EnEfficient

Powerflow in Accelerators

EnEfficient

Example: PSI Facility, 10MW

EnEfficient

Example: PSI Facility, 10MW

conversion efficiency grid to secondary radiation

conversion to secondary radiation/particles is often required

- \rightarrow has great potential for the overall efficiency, for example:
- Synchrotron Radiation

emittance!; optimized undulators; FEL: coherent radiation; energy recovery

Colliders

low-beta insertion; crab cavities etc.

Neutron Sources

target; moderators, neutron guides etc.

plug

nower

Muon Sources

plug

nower

power

beamline

target; capture optics; µ-cooling

powe

beamline

plug

nower

radiation

at sample

Example: improved conversion efficiency Spallation Target [M.Wohlmuther, PSI]

old

new

measure	gain
Zr cladding instead steel	12%
more compact rod bundle	5%
Pb reflector	10%
inverted entrance window	10%
total gain factor	1.42

beam

color code: neutron density on same scale (MCNPX)

n/CC/p 6.000E-04 8.289E-04 1.145E-03 2.186E-03 3.020E-03 5.763E-03 7.962E-03 1.100E-02

Accelerator Efficiency - Outline

1) political picture of energy efficiency

- desire: sustainable energy: but insufficient storage; numerical examples of amounts of energy
- consequences for accelerator facilities
- work package EnEfficient within the Eucard-2 program

2) power flow in an accelerator

- major consumers in typical accelerator facilities
- conversion to secondary radiation: highest potential

3) examples of technical developments towards higher efficiency

- heat recovery
- efficient magnets
- efficient RF generation, s.c. cavities
- energy management

EUCARD²

EnEfficient

Heat Recovery Workshop, Lund, March 2014

[Th.Parker, E.Lindström, ESS]

Participants (Experts) from

DESY, ALBA, SOLEIL, ESS, MAX-4, PSI, DAFNE, ISIS (institutes) E.ON, Kraftringen, Lund municipality (industry, local authorities)

- lab survey on consumption and heat recovery
- heat recovery works for many facilities; high temperatures beneficial; local heat distribution system required
- greenhouses/food production present interesting application (non-linear scaling)
- new facilities MAX-4 and ESS foresee heat recovery on large scale

talks: http://indico.esss.lu.se/indico/event/148/

Lab Survey: Energy Consumption & Heat

[Master Thesis, J.Torberntsson, ESS]

Use of Waste Heat

produce work \rightarrow electrical power?

example: T=40°C: efficiency 8% T=95°C: efficiency 20%

 $W_{\rm max} = Q \left(1 - T_0 / T \right)$

 convert heat to higher T level for heating purposes

 $Q_{\rm H} = W \cdot {\rm COP}$

example: T=40°C, $T_{use} = 80°C$, COP=5: W=10kW, $Q_C = 40kW$, $Q_H = 50kW$ (availabe for heating)

use heat directly at available temperature

example: T_{use} =50°C ...80°C : heating T_{use} =25°C...50°C: green houses, food production

However: strong scaling with T for food production, i.e. fish!

An increase in temperature from 8.6 to 13.7 °C doubled the growth rate in salmon smolt.

A.Kiessling BY B.Fyhn Terjesen, Nofima 24L:0D 12L:12D 100 2AS Vaks 80 Weight (average) in grams СП \cap 60 40 Vaks 20 0 20 100 40 60 80 0 Days

Photo A.Kiessling

SLU

Efficient RF Generation and Beam Acceleration

RF generation efficiency is key for many accelerator applications, especially high intensity machines

topics at workshop:

- klystron development
- multi beam IOT (ESS)
- magnetrons
- high Q s.c. cavities

workshop EnEfficient RF sources: https://indico.cern.ch/event/297025/

E2V:

magnetron

EUCARD²

CPI: multibeam IOT

EnEfficient

THALES: multibeam klystron

SIEMENS: solid state amplifier THALES: TETRODE

EnEfficient

EUCARD²

Inductive Output Tubes – considered for ESS

[Morten Jensen (ESS) @ EnEfficient RF sources, 2014]

 \rightarrow Klystrons:

 \rightarrow IOTs:

Back-off for feedback, cost: 30%

Operate close to max efficiency

Klystrons: Methods to get high efficiency

[Ch.Lingwood, I.Syratchev et al]

- Bunching split into two distinct regimes:
 - non-monotonic: core of the bunch periodically contract and expand (in time) around center of the bunch
 - outsiders monotonically go to the center of the bunch
- Core experiences higher space charge forces which naturally debunch
- Outsiders have larger phase shift as space charge forces are small
- long but efficient tubes result.
- from simulations: 90% efficiency comes into reach

superconducting structures for CW operation

voltage, dissipated power and cryogenic efficiency:

$$\left(\frac{R}{Q}\right) = \frac{U_a^2}{P_{\text{dissip}}Q} \quad P_{\text{cryo}} = \frac{P_{\text{cold}}}{\eta_c \eta_p} \approx 700 P_{\text{dissip}}@2\text{K}$$

new developments:

- N₂ doping, high Q, low P_{dissip}
- possibly Nb₃Sn cavities, high Q at 4.5K, thus better η_{c}

related references:

- A.Grasselino, this conference
- THE JOINT HIGH Q0 R&D PROGRAM FOR LCLS-II, A. Crawford et al, CLASSE/FNAL/SLAC/TJNAF, IPAC 2014
- Nb3Sn PRESENT STATUS AND POTENTIAL AS AN ALTERNATIVE SRF MATERIAL, S. Posen, M. Liepe, LINAC 2014

low power accelerator magnets

permanent magnets	
Pro: no power required, reliable, compact	Con: tunability difficult, large aperture magnets limited, radiation damage
optimized electromagnet	
Pro: low power, less cooling (+vibrations)	Con: larger size, cost
pulsed magnet	
Pro: low average power, less cooling, high fields	Con: complexity magnet and circuit, field errors
s.c. magnet	
Pro: no ohmic losses, higher fields	Con: cost, complexity, cryo installation
high saturation materials	
Pro: lower power, compactness and weight	Con: cost, gain is limited

Workshop on Special Compact and Low Consumption Magnet Design, November 2014, CERN; indico.cern.ch/event/321880/ in prep: Ph.Gardlowski, master thesis, systematic comparision of beam transport

EnEfficient (

Permanent Magnet Quad Design for CLIC

[B.Shepard, STFC Daresbury]

- NdFeB magnets with B_r = 1.37 T
- 4 permanent magnet blocks
- gradient = **15.0...60.4 T/m,** stroke = 0..64 mm
- Pole gap = 27.2 mm
- Field quality = ±0.1% over 23 mm

Stroke = 0...64 mm

Tunable high-gradient permanent magnet quadrupoles, B.J.A. Shepherd *et al* 2014 *JINST* 9 T11006

EUCARD²

Pulsed Quadrupole Magnet [P.Spiller et al, GSI]

	Prototype Quadrupole
Gradient	80 T/m
Length	0.65 m
Pulse length	90 μs (beam 1 μs)
Peak current	400 kA (35 kA)
Peak voltage	17 kV (5 kV)
Energy @17 kV	65 kJ (5.6 kJ)
Inductivity	535 nH
Capacitor	450 μF
Forces	200 kN

Engineering model of the prototype quadrupole magnet incl. support

see U.Bell et al: WEPMA021

- low average power; energy recovery in capacitive storage possible for periodic operation; high field
- complexity added by pulsing circuit; field precision potentially challanging

EnEfficient (

EUCARD²

E management: impact of solar/wind energy

(taken from internet)

Energy management example: CLIC Study on standby modes

CLIC project predicts large power for 3TeV case: 580MW idea:

- prepare standby modes for high consumption times during day; relatively fast luminosity recovery from standby (challenging)
- model calculation includes standby power, startup times

result of model with 2 standbys during day:

EUCARD²

Energy consumption per day

We could go to stand-by mode during the most critical (i.e. expensive) hours of the day...

 1 day with 2 × standbys: E_{standby} = 582 MW × 14 hours + 2 × (4 × 268 MWh + 1 × 425 MWh) = 11.14 GWh L_{standby}t = 2.0×10³⁴ cm⁻²s⁻¹ × (14 + 2 × ½) hours = 1.08 fb⁻¹

 Energy consumed is reduced by 18% (-2.826 GWh) Luminosity delivered is reduced by 37% (-0.648 fb⁻¹)

EnEfficient

Energy Storage for Accelerators

storage systems needed for:

- pulsed RF systems
- cycling synchrotrons
- pulsed magnets
- uninterrupted power
- strategic energy management

LIQuid HYdrogen & SMES

development by KIT for general purpose: hybrid SMES/LH2 [M.Sander, R.Gehring, KIT]

- large power 10..100 MW
- capacity to ~70 GWh
- SMES to ~10 GJ
- synergy with existing cryogenics

Summary

- with scarcity of resources and climate change Energy Efficiency becomes important for accelerator projects; Eucard-2 provides networking on this topic
- physics concept to generate radiation for users has large potential for efficiency (SR, exotic particles, μ, n etc.); advancements should be better communicated as efficiency improvements
- many technical efforts are undertaken with heat recovery, RF systems, cavities, magnets, energy management
- next general workshop on Energy for large RI's (Oct 15): <u>http://erf.desy.de/energyworkshop</u>
- planned: proton driver efficiency (Mar 16), Energy management (2016)
- Eucard-2/EnEfficient stay tuned: <u>www.psi.ch/enefficient</u>