Advances in Proton Linac Online Modeling

Xiaoying Pang IPAC'15

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Outline

- Existing online modeling tools
- Motivation
- High Performance Simulator (HPSim)
 - Performance & benchmarks
 - Applications

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

A typical RF linac consists of injectors, transports and RF accelerating structures

Los Alamos Neutron Science Center (LANSCE) Linac collection of ~5100 RF gaps, 400 quads, drifts, dipoles ...

Existing Online Modeling Tools

- TRACE2D/3D (LANL)
 - well established online modeling tools for proton linac
 - envelope model, linear space charge
- XAL online model (SNS)
 - more recent development, widely adopted
 - envelope + single particle model, linear space charge
 - linac + ring
 - tools: PASTA, SLACS, orbit correction, etc.
- ESS linac simulator (ESS)
 - latest development
 - envelope model, nonlinear space charge force assuming Gaussian distribution
 - multi-particle, offline

UNCLASSIFIED

Is the envelope model adequate for online modeling?

• Match & steer a nicely formed beam \rightarrow adequate

Is the envelope model adequate for online modeling?

We need a better online modeling tool for high power operation

Low-power tune-up

- envelope model
- direct beam measurements

Empirical tweaking

- subjective
- inefficient
- not optimal

High-power operation

- lack of non-interceptive diagnostics
- lack of online beam modeling tool for high power beam
 - beam loss ?
 - nonlinear space charge ?
 - → Multi-particle : slow

UNCLASSIFIED

Slide 7

High Performance Simulator (HPSim)

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

HPSim: strike a balance between speed and accuracy

- Accurate enough
 - multi-particle \rightarrow simulate real beam distribution
 - nonlinear space charge: SCHEFF 2D (PIC)
- Fast enough
 - sub-seconds up to several seconds
 depending on the size & scale of the simulation

NNS

HPSim: fast multi-particle online modeling

- Physics model \rightarrow PARMILA
 - Pros
 - well-established, proven to work for decades
 - multi-particle, location-based (z-code), transfer maps
 - PIC space charge: SCHEFF 2D, PICNIC 3D
 - DTL, CCL, CCDTL, SC
 - Cons
 - algorithms are made for designing machines from scratch \rightarrow
 - off-design scenarios: absolute phase instead of relative phase, scaled TF, space charge for beam in bucket, etc.
 - difficult to input real world machine parameter \rightarrow
 - database (SQLite) : static geometry of the machine, engineering to physics conversion, calibrations
 - slow (minutes or longer) \rightarrow GPU

UNCLASSIFIED

Graphics processing unit (GPU): fast and cost effective

- Video game \rightarrow scientific computing (2007 NVIDIA CUDA)
- "Democratized" supercomputing platform : most accessible and popular
- Cost effective!
 - \$500 vs. a few thousand dollars
 - cheap to make a standalone system that is available 24/7

- Outstanding parallel computing performance
 - Compare to CPU: Instruction throughput (x3-20) & memory bandwidth (x5)
 - Powers some of the world's most powerful supercomputers
 - Titan (Oak Ridge National Lab, 2012)
 - Summit (Oak Ridge National Lab, future)
 - Sierra (Lawrence Livermore National Lab, future)

UNCLASSIFIED

GPU gives dramatic performance boost!

- Speedups (NVIDIA GTX 580 vs. Intel Xeon E5520 2.27GHz)
 - without space charge: up to 160
 - space charge: up to 45

X. Pang, L. Rybarcyk, Computer Physics Communications, 185, 744, 2014

- Front-to-end run time (NVIDIA Tesla K20c)
 - 64K particles
 - 800-meter-long LANSCE linac (750KeV to 800 MeV)
 ≈ 5100 RF gaps + 400 quads + 6000 space charge
 - 5.5 seconds!
- To further improve
 - newer features, lastest GPUs, multiple GPUs

UNCLASSIFIED

User-friendly by design

2D GUI for tuning and continuous monitoring

2D/3D GUI follows a bunch through the linac

Longitudinal beam dynamics benchmark - phase scans

- Beam based calibration
- Phase scans for DTL and CCL

Applications

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Guided tuning, what-ifs, & operator training all possible with HPSim

- Characterize beam while tuning to reduce beam spill
- What-ifs : new diagnostics, operation mode, beam line, and operator training
- Troubleshooting operational problems

HPSim + Multi-Objective Particle Swarm Optimization(MOPSO) = powerful online/offline machine setting optimizer

convergence = a

few seconds)

- Automatically tuning several machine parameters to find optimal set points that will produce minimum
 - mismatch factor
 - beam loss
 - power of lost beam (runtime to
 - emittances
 - phase width …
- MOPSO can be fast enough for online optimization
 - multi-objective, global optimization
 - fast convergence, faster than multi-objective genetic algorithm (MOGA)

UNCLASSIFIED

Slide 19

HPSim + MOPSO can produce optimal machine set points

Optimize DTL beam

- o 11 parameters
 - RF phase & amplitude
 - **3 objectives**
 - emittance z
 - phase width
 - power of lost beam
- o runtime to convergence
 - MOPSO = 16 mins
 - MOGA >= 1 hour

HPSim: a test bed for new control and tuning schemes

- Testing on real machine can be risky and costly
- HPSim \rightarrow virtual experimental environment
 - resembles the real accelerator
 - safe, inexpensive, efficient and productive
- Model Independent Accelerator Tuning first tested with HPSim before carrying out real experiments

Autonomous particle accelerator?

Summary

- High Performance Simulator (HPSim) is an accurate and fast online multi-particle modeling tool for high power proton linac operation
 - multi-particle, enhanced PARMILA
 - easy to simulate real-world off-design scenarios
 - accelerated by GPU : subseconds to seconds
 - flexible & user-friendly: Python
- Applications
 - continuous monitoring
 - guided tuning, what-ifs, operator training
 - online/offline machine setting optimization
 - test-bed for new ideas!

UNCLASSIFIED

Thank you!

Operated by Los Alamos National Security, LLC for NNSA

NNS