

Recent developments on superconducting undulators at ANKA

<u>S. Casalbuoni</u>, A. Cecilia, S. Gerstl, N. Glamann, A. Grau, T. Holubek, C. Meuter, D. Saez de Jauregui, R. Voutta ANKA, KIT C. Boffo, Th. Gerhard, M. Turenne, W. Walter Babcock Noell GmbH

Outline

- Motivation R&D of SCIDs
- Ongoing collaboration with BNG:
 - SCU15
 - SCU20
- HTS tape stacked undulator for table top FELs
- Tools and instruments for R&D
 - CASPER II
 - COLDDIAG
- Summary

Recent developments on superconducting undulators at ANKA Sara Casalbuoni, IPAC'15, Richmond, VA, USA

Motivation R&D of scIDs

Develop SCUs for ANKA and low emittance light sources

With respect to permanent magnet undulators SCUs can generate :

- Harder X-ray spectrum
- Higher brilliance X-ray beams

Why? Larger magnetic field strength for the same gap and period length

Superconducting Iron Poles Coils IVU= in-vacuum undulator

CPMU= cryogenic permanent magnet undulator SCU=superconducting undulator

	IVU* (SLS)	CPMU [†] (DLS)	CPMU PrFeB [#]	SCU NbTi wire**	SCU NbTi APC ^{††}
λ _u [mm]	19	17.7	15	15	15
# of periods	105	112	133	133	133
magn. gap [mm]	5	5.2	5.2	6	6
B [T]	0.86	1.04	1.00	1.18	1.46
К	1.53	1.72	1.4	1.65	2.05

*F. Bødker et al., EPAC06 [†]C.W. Ostenfeld & M. Pedersen, IPAC10 [#]M.E. Couprie et al., FLS2012 **D. Saez de Jauregui et al., IPAC11 ⁺⁺T. Holubek et al, IPAC11

Simulations performed with SPECTRA§

§T. Tanaka and H. Kitamura, J. Synchrotron Rad. 8, 1221 (2001).

ANKA Synchrotron Radiation Facility

Motivation R&D of scIDs

At ANKA large vacuum gap 7 mm instead of 5 mm longer period lengths

Simulations performed with SPECTRA[§] [§]T. Tanaka and H. Kitamura, J. Synchrotron Rad. 8, 1221 (2001). SCU20 has larger brilliance and flux than SCU15

vacuum gap = 7 mm

	CPMU [†] (DLS)	APS SCU0*	SCU15**	SCU20 ^{††}
λ _u [mm]	17.7	16	15	20
# of periods	87	20	102	77
B [T]	0.71	0.64	0.70	1.46
К	1.17	0.96	0.98	2.20

[†]C.W. Ostenfeld & M. Pedersen, IPAC10 ^{*}Y. Ivanyushenkov et al., IEEE Trans. on Appl.

Supercon. 4102004, Vol. 24-3 (2014)

**D. Saez de Jauregui et al., IPAC11

⁺⁺ S. C. et al., IEEE Trans. on Appl.

Supercon. 4101305, Vol. 24-3 (2014)

Ongoing collaboration of ANKA and BNG to develop SCUs for ANKA and low emittance light sources

- NbTi wire
- Conduction cooling

Common design ANKA and BNG Manufacturing: BNG Testing: ANKA

Sara Casalbuoni, IPAC'15, Richmond, VA, USA

SCU15: main characteristics

- Period length : 15 ± 0.01 mm
- Number of full periods: 100.5
- Peak field on axis > 0.69 T
- Mechanical accuracies at 300 K < 50 μm</p>

206 plates of high magnetic field saturation cobalt-iron alloy

- Beam heat load 4 W
- Beam stay clear
 gap closed (open) > 7 (15) mm
- To be better than CPMUs, with NbTi needed nominal difference magnetic and vacuum gap 1 mm

Cross section NbTi wire: 0.54 mm x 0.34 mm (including insulation)

End fields:

first winding packages 21 turns (3 layers) second winding packages 63 turns (9 layers)

SCU15: tests without beam

- FAT completed summer 2014
- Installation in ANKA 12.2014-1.2015
- Tests with beam in 2015

- Cooling time 7 days
 - Warming up 4 days
 - Ramping time < 600 s
- Current stability of main coils at max. current 150 A and correction coils successfully tested for 6 days
- Movable vacuum chamber
 7 mm 15 mm at 10 K:
 successful vacuum test
 < 3 x 10⁻¹⁰ mbar in cold
 conditions

ANKA Synchrotron Radiation Facility

SCU15 installed in ANKA

Babcock Noell GmbH

Babcock Noell GmbH

ANK

From 3^{rd} harmonic position B = 0.73 T > B=0.62 T* of CPMU using PrFeB with the same period length of 15 mm and beam stay clear of 7 mm.

* M. E. Couprie et al., FLS'12, Newport News, VA (2012)

SCU20

Lessons learned from previous development of 1.5 m long undulator coils: round wire, low carbon stainless steel, blocks ~0.15 m, racetrack, new winding scheme: from one groove to the next changing winding direction

HTS tape stacked undulator for table top FELs

S. Prestemon et al., IEEE Trans. on Appl. Supercond. 1880-1883 Vol. 21-3 (2011)

KIT internal collaboration: ANKA with ITEP

- Etching using Trumpf picosec YAG IR laser, programmable beam control used for Roebel cables
- Groove formation very reliable applying laser
- No contamination of groove detected (SEM)

First magnetic field measurements on HTS structured tape

T. Holubek et al., IEEE Trans. on Appl. Supercond. 4602204 Vol. 23-3 (2013)

Tools and instruments for R&D: CASPERII

A. Grau et al., IEEE Trans. on Appl. Supercond. 9001504 Vol. 22-3 (2012)

ANKA

Tools and instruments for R&D: CASPERII

1.00 Main coil: 375 A $0.75 \cdot$ Cor. coils. 4.75 A and 5.75 A **Commissioning of local and** 0.50 integral field measurement 0.25 Field [T] systems accomplished 0.00 -0.25 Hall1 [T] -0.50- Hall2 [T] -0.75 Hall3 [T] -1.00Main coil: 375 A -1.256.0 75 225 375 150 300 0 450 1st field integral [Tm] Distance [mm] -3.000E-05 0.000 Poster S. Gerstl, WEPMA027 3.000E-05 2nd field integral [Tm²] -4.000E-04 0.000 4.000E-04 4.4 3.8 4.0 4.2 4.4 4.6 4.8 5.0 3.6 SCU20 Mockup 2 Current in correction coil 1 [A]

1.25

ANKA Synchrotron Radiation Facility

ΔΝΚ

Tools and instruments for R&D: COLDDIAG

Cold vacuum chamber for diagnostics to **measure the beam heat load** to a cold bore in different synchrotron light sources

The beam heat load is needed to specify the cooling power for the cryodesign of superconducting insertion devices

The **diagnostics** includes measurements of the:

- heat load
- pressure
- gas composition
- electron flux of the electrons bombarding the wall

In collaboration with CERN: V. Baglin LNF: R. Cimino, B. Spataro University of Rome ,La sapienza': M. Migliorati DLS: R. Bartolini, M. Cox, E. Longhi, G. Rehm, J. Schouten, R. Walker MAXLAB : Erik Wallèn STFC/DL/ASTeC: J. Clarke STFC/RAL: T. Bradshaw

S. Gerstl et al., PRSTAB, 17, 103201 (2014)

Significant discrepancy compared to theoretical expectations ... S. C. et al., JINST 7 P11008 (2012)

Summary

SCU15

- Reliable operation of a full scale device with 15 mm period length in the ANKA storage ring
- For the first time for SCUs with beam, higher fields than CPMUs with the same geometry

SCU20 0.3 m mockup

- Mechanical tolerances at RT < 60 μm</p>
- Test in cond. cooling 688 A reached at ~ 4 K (nominal current 380 A)
- Spectral performance advantages on CPMU

HTS stacked undulator

The first magnetic field measurements on a HTS structured tape have been successfully performed in the test facility CASPER I (liquid helium bath)

Development tools for R&D on SCIDs

- CASPER II: commissioning of local and integral field measurement systems accomplished
- COLDDIAG: measured beam heat load to a cold bore installed in the DLS

Backup slides

Recent developments on superconducting undulators at ANKA Sara Casalbuoni, IPAC'15, Richmond, VA, USA

Motivation R&D of scIDs

Recent developments on superconducting undulators at ANKA Sara Casalbuoni, IPAC'15, Richmond, VA, USA **ANKA** Synchrotron Radiation Facility

ANK