



# Intra-beam Scattering Effects in the Extra Low ENergy Antiproton ring (ELENA)

# Javier Resta-Lopez, James Hunt, Carsten Welsch,

Cockcroft Institute, The University of Liverpool



IPAC 2015 Richmond, Virginia, USA



# Outline

- Context
- ELENA overview
- Emittance dilution and lifetime limiting processes
  - Rest gas
  - IBS
- Beam evolution
- Summary and Future plans

## Context

#### **Antiproton Decelerator (AD) at CERN**

The AD provides low-energy antiprotons (5.3 MeV kinetic energy) for different experiments dedicated to the production of antihydrogen and measurement of its properties



## Context

#### **Antiproton Decelerator (AD) and ELENA at CERN**

**ELENA** will bring a 10 to 100-fold increase in the experiments' efficiency, as well as the possibility to accommodate an extra experimental area to investigate gravitation with antihydrogen (GBAR)



#### Schematic layout Injection with magnetic septum (≈300 mrad) and kicker (84 mrad) Extraction High sensitivity towards existing magnetic pick-up experiments for Schottky diagnostic (for intensity) and LLRF C = 30.4 m**Bending magnets** Wideband RF cavities e-cooler $(\pi/3 \text{ kick angle})$ Scraper for destructive emittance measurements Extraction **Compensation solenoids** towards new experimental area **The e-cooler** must be able to produce a cold and relatively intense electron beam: $n_e \approx 1.5 \times 10^{12} \text{ m}^{-3}$ $k_B T_{\perp} < 0.1 \text{ eV}, \quad k_B T_{\parallel} < 0.001 \text{ eV}$

Details in ELENA TDR, CERN-2014-002 (April 2014)

#### **Optics**

Good tunability in the range  $2 < Q_x < 2.5$  and  $1 < Q_y < 1.5$ 



MADX model based on the specifications of the ELENA TDR

#### **ELENA cycle**



We have mainly focused on beam dynamics studies during the 1<sup>st</sup> and 2<sup>nd</sup> e-cooling plateaus

# **Emittance dilution and lifetime limiting processes**

#### **Heating processes:**

- Interaction with the **rest gas**:
  - Nuclear scattering

- → particle loss if high scattering angle
- Single Coulomb scattering
- Multiple Coulomb Scattering (MCS)
- The ELENA vacuum pipe will be coated with Non-evaporable Getter (NEG) films
- Expected residual gas composition: 95% H<sub>2</sub>, 2% CO, 2% CO<sub>2</sub>, 1% CH<sub>4</sub>
- Nominal vacuum pressure for ELENA: P=3x10<sup>-12</sup> Torr
- This pressure is a very safe limit in terms of both low MCS effect and very low rate of large angle scattering
- Intra-Beam Scattering (IBS): Multiple small-angle Coulomb scatterings of charged particles within the accelerator beam itself. Exchange of energy between the transverse and longitudinal degrees of freedom

## **BETACOOL** simulations

#### **BETACOOL:** [A. Sidorin et al., NIM A 558 (2006), 325]

- Calculation of the evolution of beam distributions under the action of cooling forces (in this case electron cooling) + different scattering effects
- Benchmarked against experimental data in different rings, e.g.

Experimental studies of IBS in RHIC and comparison with BETACOOL simulations



[A. V. Fedotov et al., Proc. of HB2006, WEBY03, Tsukuba, Japan, 2006]

# **BETACOOL** simulations

#### Simulation conditions:

- Multiparticle simulations based on a Monte-Carlo method (model beam algorithm)
- 1000 modelled particles
- Coasting antiproton beam (at cooling plateaus) and bunched beam (before extraction)
- Electron cooling considering a cylindrical uniform electron beam distribution
- Cooling process + Rest gas + IBS (Martini model)
- Cooling friction force computed using the Parkhomchuk's model (magnetised electron distributions)

## 1<sup>st</sup> cooling plateau, p=35 MeV/c, coasting beam

• Electron cooling process in presence of rest gas and IBS Parameter evolution:

Simulated 10 random seeds for the evolution of a distribution of 1000 modelled particles



| Step in cycle                            | ε <sub>x</sub> , ε <sub>y</sub> [π mm mrad] (rms) | Δp/p [%] (rms) |
|------------------------------------------|---------------------------------------------------|----------------|
| Start 1 <sup>st</sup> cooling (35 MeV/c) | 8.0, 8.0                                          | 0.1            |
| After 8 s cooling (35 MeV/c)             | 1.1, 1.1                                          | 0.02           |
| Conservative initial values              |                                                   |                |

## 1<sup>st</sup> cooling plateau, p=35 MeV/c, coasting beam

• Electron cooling process in presence of rest gas and IBS Beam profile evolution:



During the cooling process, the beam distribution quickly deviates from a Gaussian profile and a very dense core appears

Core overcooling. Underestimating IBS effect in the core?

## 1<sup>st</sup> cooling plateau, p=35 MeV/c, coasting beam

• Core-tail development:



The parabola represents the momentum spread of the electrons due to space charge

For large initial beam size, particles in the tails experience weaker friction forces than in the core  $\rightarrow$  development of core-tail particle distributions

#### • Core-tail development:

Standard models of IBS, such as the Martini model, are based on the growth of the rms beam parameters of a Gaussian distribution. These models underestimate the IBS effect for non-Gaussian distributions.

Further investigation:

- Apply an IBS "core-tail" model (bi-Gaussian distribution): IBS induced kicks based on diffusion coefficients which are different for particles inside and outside of the core
- Apply a IBS "Local" model: can calculate correctly IBS for arbitrary distributions, but it takes a lot of computation time

[A. V. Fedotov, "IBS for Ion Distribution Under Electron cooling" Proc. PAC2005]

#### 1<sup>st</sup> cooling plateau, p=35 MeV/c, coasting beam

• Core-tail development: IBS Martini model vs core-tail model:



Intensity [%]



The cooling of the core is smoother if an IBS core-tail model (bi-Gaussian) is applied and, probably, it describes more accurately the actual process

#### 2<sup>nd</sup> cooling plateau, p=13.7 MeV/c, coasting beam

• Electron cooling process in presence of rest gas and IBS Parameter evolution:

Simulated 10 random seeds for the evolution of a distribution of 1000 modelled particles



Taking into account the adiabatic emittance increase by a factor  $\approx 2.55$  because of the deceleration from 35 MeV/c to 13.7 MeV/c

## 2<sup>nd</sup> cooling plateau, p=13.7 MeV/c, coasting beam

• Electron cooling process in presence of rest gas and IBS Beam profile evolution:



In this case, the cooling is more homogeneous for both core and tails, and after 2 s cooling the beam reaches the equilibrium

## Before extraction, p=13.7 MeV/c, bunched beam

• Electron cooling process in presence of rest gas and IBS Parameter evolution:

Simulated 10 random seeds for the evolution of a distribution of 1000 modelled particles



# **Summary and Future plans**

- For a better understanding of the long term beam dynamics in the ELENA ring, we have started a detailed investigation into the different cooling and heating processes which determine the beam lifetime and quality of the antiproton beam
- Here we have put special emphasis on the study of the cooling process in presence of IBS

#### **Next steps:**

- Comparison of equilibrium parameters using different models of IBS
- Simulations including e-cooler imperfections
- For simplicity we have assumed initial Gaussian beam profiles. However, in practice, the distribution of the beam injected from the AD could have a significant non-Gaussian shape. This characteristic will be taken into account in future studies.
- Identify potential aspects of the machine that could be optimised
- ELENA will be an ideal test-bench to compare experiments and simulations of e-cooling at very low energies





#### Special thanks to:

# Christian Carli, Alexander Smirnov, and all the ELENA team at CERN

# Thank you





Javier Resta Lopez, IPAC 2015

## Intrabeam scattering

**IBS theory** extensively described in the literature, see e.g.

- A. Piwinski, Proc. of the 9<sup>th</sup> International Conference on High Energy Accelerators, 1974,
  p. 405: smooth lattice approximation
- J. Bjorken, S. Mtingwa (B-M), Part. Accel. 13 (1983) 115: using the scattering matrix formalism; valid for strong focusing machines; approximations valid for ultrarelativistic beams only
- M. Martini, CERN PS/84-9 (AA) 1984: (extended Piwinski's model) valid for strong focusing machines.
- M. Conte, M. Martini, Part. Accel. 17 (1985) 1: B-M theory adapted to include nonultrarelativistic corrections
- and several approximations for practical purposes in some regimes of applicability (Wei, Parzen, Bane, Rao and Katayama, ... ), as well as refinements of the standard theories above, ...

# Reservoir

## Context

- The Antiproton Decelerator (AD) at CERN provides low-energy antiprotons (5.3 MeV kinetic energy) for different experiments dedicated to the production of antihydrogen and measurement of its properties
- In today's set-up, about 99.9% of the antiprotons produced by the AD are lost due to the experiments' use of degrader foils needed to further decelerate them from the AD ejection energy (5.3 MeV) down to around 5 keV, the energy needed for trapping





Energy straggling increases energy spread such that only few antiprotons can be captured

## Context

Current setup:



ELENA will bring a 10 to 100-fold increase in the experiments' efficiency, as well as the possibility to accommodate an extra experimental area to investigate gravitation with antihydrogen (GBAR)

#### • ELENA parameters

#### For a coasting beam

| Parameter                                | 1 <sup>st</sup> plateau              | 2 <sup>nd</sup> plateau              |
|------------------------------------------|--------------------------------------|--------------------------------------|
| Beam momentum                            | 35 MeV/c                             | 13.7 MeV/c                           |
| Initial ∆p/p                             | 0.1%                                 | 0.05%                                |
| Initial 1σ emittance                     | $8 \pi$ mm mrad                      | $2.8 \pi$ mm mrad                    |
| Beam intensity                           | 2.5x10 <sup>7</sup>                  | 2.5x10 <sup>7</sup>                  |
| Average beta function $\beta_T$          | 3 m                                  | 3 m                                  |
| Average dispersion $D_x$                 | 1.2 m                                | 1.2 m                                |
| ELENA acceptance $A_{\tau}$              | 75 μm                                | <b>7</b> 5 μm                        |
| Vacuum pressure                          | 3x10 <sup>-12</sup> Torr             | 3x10 <sup>-12</sup> Torr             |
| Gas density <i>n</i> (at room <i>T</i> ) | 9.6x10 <sup>10</sup> m <sup>-3</sup> | 9.6x10 <sup>10</sup> m <sup>-3</sup> |

## **Electron cooler**

#### • ELENA e-cooler system parameters for the simulations

#### From ELENA TDR, CERN-2014-002 (2014):

| Parameter                                               | Value                                                               |
|---------------------------------------------------------|---------------------------------------------------------------------|
| Momentum [MeV/c]                                        | 35 - 13.7                                                           |
| Velocity factor $\beta = v/c$                           | 0.037 – 0.015                                                       |
| Electron beam energy [eV]                               | 355 - 55                                                            |
| Electron current [mA]                                   | 5 - 2                                                               |
| Electron beam density [m <sup>-3</sup> ]                | $1.38 \times 10^{12} - 1.41 \times 10^{12}$                         |
| B <sub>gun</sub> [G]                                    | 1000                                                                |
| B <sub>drift</sub> [G]                                  | 100                                                                 |
| Expansion factor                                        | 10                                                                  |
| Cathode radius [mm]                                     | 8                                                                   |
| Electron beam radius [mm]                               | 25                                                                  |
| Twiss parameters [m]                                    | β <sub>x</sub> =2.103, β <sub>y</sub> =2.186, D <sub>x</sub> =1.498 |
| Flange-to-flange length [mm]                            | 1930                                                                |
| Drift solenoid length [mm]                              | 1000                                                                |
| Effective length (good field region) [mm]               | 700                                                                 |
| Electron beam transverse, longitudinal temperature [eV] | 0.01, 0.001                                                         |

# **Electron cooling**

• Friction force:

The corresponding friction force vs ion velocity:



## **Intrabeam scattering**

#### **IBS heating rates**

$$\frac{1}{\tau_x}, \frac{1}{\tau_y}, \frac{1}{\tau_p} \propto \frac{r_p^2 c}{32\pi\sqrt{\pi\beta^3}\gamma^4 \epsilon_x \epsilon_y \sigma_p} \lambda$$

$$\lambda = \begin{cases} N/C & \text{for coasting beams} \\ N_b/(2\sqrt{\pi}\sigma_s) & \text{for bunched beams} \end{cases}$$

IBS becomes stronger when the phase space volume of the beam is reduced by cooling, thus limiting the achievable final emittances

## **Beam dynamics**

- 1<sup>st</sup> cooling plateau, p=35 MeV/c, coasting beam
- Electron cooling process in presence of rest gas and IBS



After 8s cooling, equilibrium is not yet reached  $(1/\tau_y)_{IBS}$  changes sign from negative (damping or cooling) to positive (heating) at t  $\approx$ 13 s

## **Beam dynamics**

- 2<sup>nd</sup> cooling plateau, p=13.7 MeV/c, coasting beam
- Electron cooling process in presence of rest gas and IBS



Equilibrium practically reached after 2 s cooling  $(1/\tau_y)_{IBS}$  changes sign from negative (damping or cooling) to positive (heating) at t  $\approx$  1 s

# **Beam dynamics**

• Electron cooling process in presence of rest gas and IBS Invariant distributions



#### 1<sup>st</sup> cooling plateau, p=35 MeV/c

Standard models of IBS, such as the Martini model, are based on the growth of the rms beam parameters of a Gaussian distribution. These models underestimate the IBS effect for beam distributions far from Gaussian.

Further investigation to prevent overcooling:

- Apply "core-tail" models
- Apply a "Local" model: it takes a lot of computation time!

## Space charge

• Space charge limit N for a stored antiproton beam with ΔQ=-0.1

**Incoherent tune shift** due to space charge effects:

For a Gaussian distributed round beam:

$$\Delta Q_{sc} \approx -\frac{r_p N}{4\pi\beta^2 \gamma^3 \epsilon} B_f^{-1}$$

where  $B_f$  is a bunching factor:

$$B_f = \frac{\langle I \rangle}{\hat{I}} \begin{cases} 1 & \text{if coasting beam} \\ \frac{\sqrt{2\pi}\sigma_z}{C}h & \text{if bunched beam} \end{cases}$$

Here we have taken the rms emittance  $\epsilon$ 

h is the harmonic number



 $N_{total} \approx 1 \times 10^7$ 

#### **Bunched beam**