Multi-GeV Plasma Acceleration Results at BELLA

IPAC15 A.J. Gonsalves Lawrence Berkeley National Laboratory

Office of DE-AC02-05CH11231

Science

ACCELERATOR TECHNOLOGY & ATA

LPAs are Compact Accelerators

Plasma accelerators - Ultra-high axial electric fields

$$E_0 = \frac{m_e \omega_p c}{\rho} \approx 100 \,\text{GV/m} \text{ for } n \approx 10^{18} \,\text{cm}^{-3}$$

- COMPACT ACCELERATORS
- Can excite large plasma waves with ponderomotive force of intense laser pulse

trapped particle orbit

Electrons externally injected or trapped from background plasma

LPAs explored for Compact Drivers of Linear Colliders and Light Sources

Lower Density and Higher Laser Power Increase Beam Energy

Dephasing (fast electrons entering defocusing region of wake) and laser depletion limited energy gain

Office of

Science

C. G. R. Geddes, et al, Nature, **431**, p538 (2004); S. Mangles et al., Nature **431**, p535 (2004); J. Faure et al., Nature **431**, p541 (2004); Leemans et al., Nature Phys. **2**, 696–699 (2006); Banerjee et al., Phys. Plasmas **19**, 056703 (2012); X. Wang et al., in press (2012).

ACCELERATOR TECHNOLOGY & ATAF

Energy

Gain

 $= E_0 L_{acc}$

BELLA Center Houses a High Repetition Rate Petawatt Laser for LPA Science

• > 1 PW peak power at 1 Hz repetition rate

Single-shot diagnostics for both laser and electron beam

BELLA is a Precision LPA Tool: Low Pointing Jitter

BELLA is a Precision LPA Tool: High Mode quality

ACCELERATOR TECHNOLOGY & ATA

9

Science

Capillary waveguides mitigates diffraction and increases interaction length (energy gain)

Science

Group Velocity Meaurement Yields Plasma Denstiv

Plasma channel: ~30 fs delay for L=3 cm at 10¹⁸ cm⁻³ density. Measure with highly sensitive interferometry measurements.

$$n(r) \approx n_0 + br^2$$

Theory: C. Schroeder et al., Phys. Plasmas 18 (2011) Experiment: J. van Tilborg et al. Phys. Rev. E 89 (2014) Experiment: J. Daniels et al. (submitted to POP)

APPLIED PHYSICS DIVISION

Measuring oscillation wavelength yields plasma channel strength

Gonsalves et al., Phys Plasmas 17 (2010)

Office of

Science

12

GV Technique and Laser Centroid Oscillations used to Measure BELLA Target Density & Profile vs Pressure

Office of

Science

Capillary discharge waveguide produces stable plasma density

J. Daniels et al., "Plasma density diagnostic for embedded capillary-discharged plasma channels", submitted to Phys. Plasmas

Simulation shows typical SuperGaussian near field reduces guiding efficacy. Compensated by higher density.

Far-field energy distribution

BELLA @ 300TW produced beams with energy up to 4GeV. Pointing fluctuation larger than beamline acceptance

- Density range 6-8 × 10¹⁷ cm⁻³
- Majority charge on most shots are outside measurement angle
- Capillary damage -> pressure change, necessitating spectral measurement of density and reducing stability
 - Potential causes are misalignment and non-ideal laser mode

Gonsalves et al. POP (accepted); Leemans et al., PRL 113 (2014) 245002.

16

ACCELERATOR TECHNOLOGY & ATA

Improved target alignment and damage mitigation improves electron beam pointing and energy stability

- Capillary alignment techniques refined
 - Match beam position and angle of beam exiting capillary to beam without capillary
- Ceramic disk added to protect capillary

- 90% of beams now within the ~1 mrad acceptance (0.6mrad rms)
- ~1000 shots without drop in performance

Gonsalves et al. POP (accepted)

Electron trapping and acceleration is complex in this density regime Simulations based on measured input parameters

Simulations show strong sensitivity of self-injection physics from plasma density

Laser-heater deepens plasma channel which is expected to improve guiding and allow for lower density

Lower density \rightarrow less self-focusing \rightarrow lower a0 \rightarrow dark-current-free structure \rightarrow longer acceleration length \rightarrow higher e beam energy \rightarrow need deeper plasma channel

Controlled Injection to reduce energy spread, emittance, and allow for matched guiding

M. Chen et al., JAP **99** (06), T. Rowlands-Rees et al., PRL **100** (08) Pak et al., PRL **104**, (10); C. McGuffey et al., PRL **104**, (10); Gonsalves et al., Nat. Phys. **7** (11); Yu et al., PRL **112** (14); Schroeder et al., PRSTAB **17** (14); Geddes et al., PRL **100** (08); Faure et al., Nature **444** (06); Esarey et al., PRL **79** (97)

Applications require kHz repetition rates

ACCELERATOR TECHNOLOGY & ATA

22

Capillary Discharge Plasma source can operate at kHz repetition rates

Current multi-terawatt lasers 10s W average power. Fiber lasers demonstrated 100s kW average power. Fiber laser peak power increase required

Advantages of fiber lasers:

- High avg. power
- High efficiency
- Compact integration

Peak power low due to:

- Self-focusing
- Self-phase modulation
- Optical damage

Recently funded stewardship program: LBNL, LLNL, U. Michigan

ACCELERATOR TECHNOLOGY & ATA

24

Spatial and temporal multiplexing to achieve high peak and average power

Potential for femtosecond fiber lasers with:

- Pulse energies to >10J
- Average powers to >100kW

Baseline technology for proposed k-BELLA (few J, 1kHz)

Acknowledgements

Lawrence Berkeley National Laboratory

A. J. Gonsalves, K. Nakamura, J. Daniels, H.-S. Mao, C. Benedetti, D. E. Mittelberger, E. Esarey,C. B. Schroeder, Cs. Tóth, J. van Tilborg, C. G. R. Geddes, C. Pieronek, and W. P. Leemans

Euclid Techlabs

S. Antipov, J.E. Butler

Keldysh Institute of Applied Mathematics

P.V. Sasorov

Institute of Theoretical and Experimental Physics, Moscow

N.A. Bobrova,

University of California Berkeley

S.S. Bulanov

University of Michigan

A. Galvanauskas

Sponsor: DOE STTR Grant # DE-SC000842,

Contract DE-AC02-05CH11231, and NSF

