

Engineering Challenges of Future Light Sources

Project Sirius

Regis Neuenschwander

On behalf of the Engineering Division

Mechanical Technology Group Brazilian Synchrotron Light Laboratory www.lnls.br

Some Engineering Challenges of Some Future Light Sources

(and how we are dealing with them at Sirius)

Project Sirius

Content

Regis Neuenschwander

On behalf of the Engineering Division

Mechanical Technology Group Brazilian Synchrotron Light Laboratory www.lnls.br

- Introduction
- Slab
- Supports
- Magnets
- RF
- Vacuum
- BPM
- FOFB

ʹͶΡϾϺ

A little bit of Sirius history (2008...)

- Sirius before Machine Advisory Committee meeting in June 2012
 Emittance: 1.7 nm.rad
 Emittance: 1.7 nm.rad
 The state of the
- MAC recommendation

"6. The present lattice design is excellent by today's standards, but the committee urges LNLS to **push for tomorrow's brightness standard (e.g. <1 nm emittance)**."

Helmut Wiedemann (Stanford/SLAC emeritus), Robert Hettel (SLAC), Mikael Eriksson (MAX), Albin Wrulich (SLS)

• Sirius after MAC recommendation

Natural emittance of some Light Sources

Liu Lin (LNLS), Z. Zhao (SSRF), R. Bartolini (DLS),...

Natural emittance of some Light Sources

IPAC

Design of a Diffraction Limited Light Source (DIFL)

D. Einfeld, J. Schaper, Fachhochschule Ostfriesland, Constantiaplatz 4, D-26723 Emden
 M. Plesko, Institute Jozef Stefan, Jamova 39, P.O.B. 100, SLO-61111 Ljubljana

Liu Lin (LNLS), Z. Zhao (SSRF), R. Bartolini (DLS),...

Multiple Bend Achromat chain reaction diagram

It's all about stability !

Laboratório Nacional

de Luz Síncrotron

S

- sirius

Content

- Introduction
- Slab
- Supports
- Magnets
- RF
- Vacuum
- BPM
- FOFB

Prototype Slabs (13.5m x 6.5m each)

Slab's response to an external vibration source

11

Slab's response to an external vibration source

Slab's response to an external vibration source

Slab's response to an external vibration source

HORIZONTAL

Attenuation factor from external excitation

	Vertical	Horizontal
MAX IV	4.8	6.7
DIAMOND	4.7	5.7

"On the slab" impact point

"On the slab" impact point

Final* configuration for the Sirius foundations

Content

- Introduction ٠
- Slab •
- Supports •
- Magnets ٠
- RF •
- Vacuum ۲
- BPM •
- FOFB ٠

Magnet + Girder options

Adjustable magnets ESRF II, NSLS II...

- High precision machined
 magnets
- Rigid girder and pedestal

Shimmed (or glued) magnets DIAMOND II, SLS, TPS, PETRA III...

- High precision machined
 magnets
- Rigid girder and pedestal
- High precision girder

Magnet block MAX IV...

- High precision machined
 magnets
- Rigid block and pedestal
- High precision block

Alignment

Stability 19

Light Source

ESRF

Spring-8

APS

Petra III

SLS

Soleil

Diamond

SSRF

Alba

NSLS II

alignement

alignement

TPS (proto) 6 cam systems + locking systems

Girder solutions

100

Typical free field ground motion at LNLS site

1.4

30

Overview on magnet-girder assembly

Workshop on Accelerator R&D for USR, Beijing, 30 Oct - 1 Nov.; 2012,

8-points support, fixed, manual alignment

Girder for the storage ring

Sirius first version \leftarrow Petra III \leftarrow Diamond \leftarrow SLS...

Figure 7: First vertical modal shape of girder at 116 Hz, girder on concrete stands

Girder and pedestal prototypes

Pedestal stiffness measurement

Girder free mode measurements

CNPEM

Girder optimization

Optimization software Inspire[™]

"Inspire(d)" girder

CNPEM

🚺 ϹΝΡΕΜ

Transmissibility measurements

Transmissibility measurements

Transmissibility measurements

The goal to have all resonance modes above 100 Hz is not so far.

Content

- Introduction ٠
- Slab ٠
- Supports •
- Magnets •
- RF •
- Vacuum •
- BPM ${\bullet}$
- FOFB ٠

Magnet design and manufacturing

Magnet design and manufacturing

- NSLS-II Sextupole
- ALS Sextupole
- Reduces stacked errors
- High precision
- Time consuming (20 h)

ALS (SINAP)

Magnet design and manufacturing

Magnet design and manufacturing

- MAX-IV
- No alignment
- High rigidity
- Need of high quality and homogeneous steel
- Hard to measure

Vibrating wire measurement

CNPEΜ

Uncertainty budget	x _m (μm)	y _m (μm)	z _m (μm)	pitch _m (mrad)	yaw _m (mrad)	roll _m (mrad)
Magnetic	6.2	7.2				6.2
repeatability	0.5	7.5	-	-	-	0.5
Magnetic accuracy	-	1.3	-	0.0175	-	-
Geometrical survey	2.7	4.0	1.5	0.0200	0.0134	0.0042
Total	6.9	8.4	1.5	> 0.0266	> 0.0134	6.3

Content

- Introduction ٠
- Slab ٠
- Supports ٠
- Magnets ٠

RF •

- Vacuum •
- BPM ${\bullet}$
- FOFB ٠

Solid State RF Amplifier @ LNLS

Collaboration with LURE/SOLEIL since 1999

(special tanks to Ti Ruan)

- 1999 Prototype module with 230W
- 2001 Booster operating with 900W
- 2007 Booster upgraded to 2.2kW
- 2010 Storage Ring operating with 2 x 50 kW SSA
 - Excellent reliability, high MTBF
 - No beam loss due to module failures
 - 4 years in routine operation 7 modules failed (out of 324), 6 fixed in house
 - Whole SSA 4 beam losses in 4 years due to failures in water flow meters and power supplies

Content

- Introduction ٠
- Slab ٠
- Supports ٠
- Magnets ٠
- RF ٠
- Vacuum •
- BPM ۲
- FOFB •

Vacuum system – flange concepts

Laboratório Nacional

S

Vacuum system – flange concepts

Discrete pumping strategy (ESRF II, SPRING8 II, DIAMOND II)

ESRF II - with ante-chamber

Full NEG coated strategy (MAX IV, SIRIUS)

Pros (full NEG coated strategy):

- Simple chamber's design
- More compact -> space saving
- Low PSD yield -> Fast vacuum conditioning

Cons (full NEG coated strategy):

- Limited number of activations (10 ...?...30)
- High temperature bake-out for NEG activation
- Many bellows to accommodate chamber's expansion during bake-out

Vacuum system - NEG coating R&D for narrow gap sectors

Coating procedure (2 steps):

- 1. Coating of the circular profile
- 2. Coating of the narrow gap " keyhole" sector

Coating thickness set to 2µm

Content

- Introduction ٠
- Slab ٠
- Supports ٠
- Magnets ٠
- RF •
- Vacuum ٠
- BPM •
- FOFB ٠

Historical BPM Design Tendency

Button Geometry Choice

Sirius BPM Challenges/New Ideas

Content

- Introduction ٠
- Slab ٠
- Supports ٠
- Magnets ٠
- RF •
- Vacuum ullet
- BPM ٠
- FOFB •

Fast Orbit Feedback

CNPEM

Fast Orbit Feedback

Possible to achieve 1 kHz crossover frequency with present technology at reasonable cost

Parameters used in FOFB simulation

Vacuum chamber	15 kHz bandwidth	
PM group delay	3x FOFB sampling period	
Control algorithm	Simple PI controller tuned for maximum disturbances amplification of 5 dB	

BPM Electronics

RF Front-End

Analog performance (resolution, drifts, nonlinearity)

- Dominated by RF Front-End + ADC + clocking
- Switching frequency ~ 115 kHz

Open-source software and hardware facilitate collaboration

Signal Processing, Data Acquisition and Control Platform

- System maintainability
- High-end communication interfaces enable FOFB
- DSP algorithms flexibility

MicroTCA crate

Content

- Introduction ٠
- Slab ٠
- Supports ٠
- Magnets ٠
- RF •
- Vacuum ۲
- BPM ${\bullet}$
- FOFB ٠

Some final comments:

- The Light Source community is crossing a very exciting era, with hundreds of new developments under way and dozens new machines expected for next 10 years.
- It is still an open community and the international cooperation is one of the most important engineering tool.

Some final comments:

Laboratório Nacional de Luz Síncrotron

- The Light Source community is crossing a very exciting era, with hundreds of new developments under way and dozens new machines expected for next 10 years
- It is still an open community and the international cooperation is one of the most important engineering tool.

Success to all projects

