Effects of Accelerating Cavities on On-Line Dispersion Free Steering in the Main Linac of CLIC

E. Adli¹, <u>Jürgen Pfingstner^{1,2}</u>, D. Schulte²

¹ University of Oslo, Norway ² CERN, Switzerland

5th of May 2015

Outline

- 1. On-line DFS.
- 2. Issues due to wake fields.
- 3. Issues due to cavity tilts.
- 4. Conclusions.

1. On-line DFS

Motivation: Long-term ground motion

Initial beam-based alignment:

Orbit feedback steers beam onto golden orbit.

• Long-term ground motion (> 1 minutes):

Orbit feedback steers beam onto dispersive orbit.

- Effects on the main linac of CLIC:
 - Ground motion model: ATL law [1] with constant A of $10^{-5} \mu m/m/s$.
 - Emittance increase $\Delta \varepsilon_{v} \approx 7.5\%$ / hour (scaling law from simulation).
 - E.g. $\Delta \varepsilon_{v}$ of 100% in 13 hours.

Dispersion free steering (DFS)

- **Method** [2,3]:
 - Step 1: The dispersion η at the BPMs is measured by varying the beam energy.
 - Step 2: Corrector actuations Δy_1 (quadrupole movements) are calculated to minimise dispersion η and the beam orbit *b*.

• Considering many BPMs and quadrupoles leads to linear system of equations [4]:

$$\begin{bmatrix} b - b_0 \\ \omega(\eta - \eta_0) \\ 0 \end{bmatrix} = \begin{bmatrix} R \\ \omega D \\ \beta I \end{bmatrix} \Delta y$$

Corrections Δy are computed in least square sense.

• DFS is applied to overlapping sections of the accelerator (36 for ML of CLIC).

On-line DFS

- **Goal:** Perform DFS parasitically during physics data taking.
- Problem:
 - Only very small beam energy variation δ acceptable (< 1 per mil).
 - Measurement are strongly influenced by BPM noise and usual energy jitter.
- Solution:
 - Many measurements are averaged.
 - Use of a Least Squares estimate (pseudo-inverse), which can be significantly simplified by the choice of the excitation:

$$\eta_N = (\boldsymbol{E}^T \boldsymbol{E})^{-1} \boldsymbol{E} \boldsymbol{b} = \frac{T_N}{N\Delta E}$$
$$\boldsymbol{E} = \begin{bmatrix} -\Delta E \\ +\Delta E \\ \dots \\ -\Delta E \\ +\Delta E \end{bmatrix} \qquad T_N = \sum_{i=1}^N (-1)^i b_i$$

Performance of on-line DFS

1. **ATL motion** (13h) correction for different ω :

- 3. Correction performance:
 - ATL motion: $\Delta \varepsilon_y = 0.2\%$ after 3rd iteration.
 - BPM noise: $\Delta \varepsilon_v$ = 0.2% (BPM noise 10nm).
 - Averaging time: 144s x 3 iter. (7 minutes)

2. **BPM noise** sensitivity for different ω :

4. Robustness:

- Robust to all envisioned imperfections apart from two.
- Accuracy of wake field monitors.
- Tilt of accelerating structures.

2. Issues due to wake fields

Wake fields and DFS

Wake field kicks

- In cavity with offset Δx , head beam creates asymmetric mirror currents.
- Resulting wake fields apply dipole kicks to beam.
- Kick is zero at the head and rises towards the tail.

Dispersion from wake fields

- Since wake fields create dipole kicks, they also create dispersion.
- Dispersion profile:
 - Quadrupoles: uniform along beam.
 - Wake fields: stronger towards tail.

Hence, dispersion from wake fields cannot be compensated all along the beam by dispersion from quadrupole magnets (DFS).

- DFS can only cancel the dispersion on average
- Dispersion of opposite sign remains in head and tail.

Wake fields and DFS performance

- At CLIC, cavities are aligned to the beam to reduce the wake fields (RF alignment):
 - $-\sigma_{\rm WF}$ = 3.5 µm.
 - $\Delta \varepsilon_{\rm y} = 5\%$.
- Remaining wake fields causes problems for DFS.
- For the target energy change δ of 0.1% the DFS correction is insufficient.
- DFS works only for large energy changes δ.

Analysis of wake field sensitivity

Dispersion from wake fields

- Dispersion from wake fields is small and can be neglected for emittance growth.
- However, wake field dispersion deteriorates the DFS correction:
 - Dispersion from wake fields, can only be compensated by DFS (quadrupoles) on average along the beam.
 - Dispersion with opposite sign remains in head and tail.
 - Wake field dispersion is added from many cavities upstream.
 - This wake field dispersion creates large measured signals in the correction bin.

Energy dependence of dispersion

Dispersions of the same dipole kick depends is larger for smaller energy change δ :

Counter-measure against wake field sensitivity

- Properties of dispersion (for small δ):
 - Only grows to large values far downstream of kick.
 - But stays small just after the kick.

Hence, dispersion from wake fields can be kept small, if δ is produced just shortly before the bin to be corrected.

- Baseline for CLIC: global δ creation (via change of drive beam charge).
- But a local δ creation can be implemented in different ways, e.g.:
 - Switch off structures with On/Off mechanism of PETS.
 - De-phasing of drive beam bunches.

 Dispersion of wake fields after RF alignment for global and local energy change δ. No DFS applied upstream of DFS bin.

Improvement due to wake field counter-measure

- Local δ creation decreases wake field sensitivity significantly:
 - Wake fields: $\Delta \varepsilon_y = 7.0\%$
 - ATL motion: $\Delta \varepsilon_y < 0.2\%$ after 3rd iteration.
 - BPM noise: $\Delta \varepsilon_y = 0.2\%$.
 - Averaging time: 144s x 3 iterations.
- Wake fields are the dominant $\Delta \varepsilon_y$ source.

3. Issues due to cavity tilts

Cavity tilts and dispersion

Kicks due to cavity tilts:

- Field of a tilted cavity has also a transverse field component *E*_{kick}.
- Resulting kick deflects whole bunch.

$$\Delta x'_{\varphi} = \vec{E}_{cav} \sin \varphi \approx \vec{E}_{cav} \varphi \quad \text{for} \quad \varphi \ll 1$$

Mitigation of cavity tilt effects:

- Kicks are corrected by BPM steering.
 - σ_{φ} = 140 µrad.
 - $\Delta \varepsilon_y = 3\%.$
- Remaining dispersion is small and can be neglected for DFS.
- Remaining emittance growth due to a "wake field-like" effect:
 - Longitudinal wake fields weaken *E_{cav}* towards beam tail.
 - Hence, transverse kick is stronger for head than for tail.

Cavity tilts and DFS performance

- After 1-2-1 steering, remaining emittance growth is due to "wake field-like" effect:
 - $\sigma_{tilt} = 140 \ \mu rad.$

$$-\Delta\epsilon_{\rm y}=3\%$$
.

- For global large energy changes δ, DFS correction is not influenced by cavity tilts.
- Small δ worsen DFS performance.
- But especially local δ changes destroy the correction completely.

Analysis of cavity tilt sensitivity

- For dispersion measurement, a beam energy change δ has to be created:
 - Energy change δ is created by changing cavity gradients.
 - Gradient change also causes change of transverse tilt kicks.
 - Beam orbit is changed.
- Orbit change overlaps with dispersion signal in DFS bin.
- Orbit change signal is interpreted as dispersion and destroys correction.
- Higher relative gradient changes make the problem worse:
 - Local scheme is worse than global one.
 - This is not only true for small δ, but also for ordinary DFS.

Counter-measures against cavity tilt sensitivity

- **Goal:** Remove orbit change due to tilt kick change from measured dispersion.
- **Problem:** Mixture of orbit change and dispersion in DFS bin.
- **Solution:** Predict orbit change Δb_{bin} in DFS bin from BPM measurements in upstream bin Δb_{up} :
 - 1. Fit orbit change Δb_{up} in upstream DFS bin by virtual quadrupole offsets Δx_{up} .

$$\Delta x_{up} = R_{up}^{\dagger} \Delta b_{up} = (U \Sigma V^{T})^{\dagger} \Delta b_{up}$$
$$= V \Sigma U^{T} \Delta b_{up}$$

2. Use only few singular values for the SVD inversion to improve robustness.

3. Predict orbit changes Δb_{bin} in DFS bin via the corresponding orbit response matrix:

$$\Delta b_{bin} = R_{up \to bin} \Delta x_{up}$$

4. Finally, the predicted orbit can be removed:

$$\eta_{corr} = \eta_m - \Delta b_{bin}$$

Improvement due to cavity tilt counter-measure

- Removal of the orbit change decreases tilt sensitivity significantly:
 - Tilts: 2.5%
 - Wake fields: $\Delta \varepsilon_y = 9.0\%$
 - ATL motion: $\Delta \varepsilon_y < 0.2\%$ after 3rd iteration.
 - BPM noise: $\Delta \varepsilon_v = 0.2\%$.
 - Averaging time: 144s x 3 iterations.
- Wake field effect is worsened, because removal technique also acts on wake field signals.

4. Conclusions

- On-line DFS is necessary to suppress ground motion effects on the time scale of hours.
- The scheme can compensates ground motion effects on-line despite of BPM noise.
- Two imperfections cause problems:
 - 1. Resolution of wake field monitors.
 - 2. Tilt of acceleration cavities.
- Effect of these imperfection on DFS has been analysed and counter-measures have been successfully implemented.
- The emittance growth due to dispersion can now be corrected during physics data taking to the same level as with off-line DFS.
- The necessary energy change δ of only 0.1% is 50 times smaller than before, which is also very interesting for the application of DFS in the BDS.

Thank you for your attention!

References:

- [1] V. Shiltsev. Observations of random walk of the ground in space and time, Phys. Rev. Lett. 104, 238501 (2010).
- [2] T.O. Raubenheimer and R.D. Ruth. *A dispersion-free trajectory correction technique for linear colliders*, Nucl. Instrum. Meth. A 302,191-208 (1991).
- [3] A. Latina et al. *Experimental demonstration of a global dispersion-free steering correction at the new linac test facility at SLAC*, Phys. Rev. ST Accel. Beams 17, 042803 (2014).
- [4] A. Latina and P. Raimondi, A novel alignment procedure for the final focus of future linear colliders, In Proc. of the 25th Linear Accel. Conf. (LINAC10), MOP026 (2010).