

MAGNET DESIGN AND CONTROL OF FIELD QUALITY FOR TPS BOOSTER AND STORAGE RINGS

Jyh-Chyuan Jan

On behalf of magnet group, NSRRC

IPAC15, May 5, 2015, Richmond, Virginia, USA

IPAC15

- Introduction
- Magnet manufacture and inspection
- Mechanical error of magnet
- Magnetic field performance of magnet
- Magnet center inspection
- Permeability inspect of BR vacuum chamber
- Field distortion from the permeability chamber
- Summary

Milestone of magnet manufacture

2005		Preliminary design of the magnet	
2007		TPS project approved	
2009		Magnet prototype constructed and	examined in house
2011		One-section prototype (23 magnets)	finished
2012		Mass production of magnet was beg	gun
2013	Oct.	All magnets completed	
2014	Aug.	Accelerator install completed	
2014	mid-Dec.	Hardware testing and improvement	t completed
2014	Dec. 31	First synchrotron light at 3 GeV wa (no corrector applied)	s observed

Overview-1/24 section (1 cell)

<u>1/24 section (1 cell):</u>
19 magnets: DM*2+QM*10+SM*7
3 girders: 4m-long/girder
1 vacuum chamber: 14m-long

Magnet parameter

SR magnet	Dipole	Quadrupole short/long	Sextupole A/B/C
Quantity	48	192 / 48	96 / 48 / 24
Magnetic length (m)	1.1	0.3 0.6	0.25
Field strength (T,T/m,T/m ²)	1.191	17/15.63	478
Magnetic gap height/diameter (mm)	46	74	78
Number of turns / pole	36	54 / 48	26
Conductor dimension (mm ²)	16 x 16	8×8 / 9×9	8 × 8
Coolant hole diameter (mm)	7	4 / 4.5	4

BR magnet	Dipole BD/BH	Quadrupole QF/Q1/Q2/QM	Sextupole S1/S2
Magnet quantity	42 / 12	48 / 12 / 12 / 12	24
Magnet length (m)	1.6 / 0.8	0.3	0.2
Bore diameter or gap (mm)	21.4~23.8	36	36
Number of turns / pole	24	18 / 18 / 12 / 6	18
Normal field (T, T/m,T/m ²)	0.819,-1.72,-12.3	11.26,25.8/14.3/-9.1/-4.2	200
Conductor dimension(mm ²)	13×13	5×5	3×2
Coolant hole diameter(mm)	6.5	2	

Pole profile is machined by the Computer Numerical Control Machine (CNC)
 Pole profile is machined by the Wire Electrical Discharge Machine (WEDM)

Ref: C. S. Hwang et. al., "Status of accelerator lattice magnets design of TPS project", Proceedings of PAC 09, Canada (2009).

Magnetic field specification-SR/BR

Storage ring							
SR-dipole (SR-DM)		SR-quadrupole (SR-QM)			SR-sextupole (SR-SM)		
n	B_nL/B_1L	n	B_nL/B_1L A_nL/B_1L		n	B_nL/B_2L	A_nL/B_2L
	[×10 ⁻⁴]		[×10 ⁻⁴]	[×10 ⁻⁴]		[×10 ⁻⁴]	[×10 ⁻⁴]
0	10000	1	10000	-	0	±15	±10
1	<u>±</u> 3	2	±2	<u>±2</u>	2	10000	-
2	<u>±</u> 3	3	<u>±2</u>	<u>±1</u>	3	±2	<u>±2</u>
3	±2	4	±0.5	±0.3	4	<u>±3</u>	<u>±1</u>
4	<u>±</u> 3	5	±0.8	±0.3	5-7	±0.5	±0.5
		6-8	±0.3	±0.3	8	±0.5	±0.3
		9	±0.3	±0.3	9	±0.3	±0.3
		10-26	±0.3	±0.3	10-13	±0.3	±0.3
$\Delta b_0/b_0$	1×10-4				14	±0.3	±0.3
$\Delta b_0 L/b_0 L$	1×10-3				15-26	±0.3	±0.3

Booster ring										
BR-dipole (BR-BD/BH)		BR-Pure quadrupole (BR-QP)		BR-combin	BR-combined quadrupole (BR-QF)			BR-sextupole (BR-SM)		
n	B_nL/B_1L	n	B_nL/B_1L	A_nL/B_1L	n	B_nL/B_1L	A_nL/B_1L	n	B_nL/B_2L	A_nL/B_2L
	[×10 ⁻⁴]		[×10 ⁻⁴]	[×10 ⁻⁴]		[×10 ⁻⁴]	[×10 ⁻⁴]		[×10 ⁻⁴]	[×10 ⁻⁴]
0	10000	1	10000	-	1	10000	_	0	±45	-
1	-	2	<u>±</u> 4	±10	2	-	_	2	10000	_
2	-	3	<u>±</u> 4	±2	3	±4	±2	3	±15	<u>±6</u>
3	±3	4	±1	±1.5	4	±4	<u>±1</u>	4	<u>±</u> 9	<u>±6</u>
		5	<u>±3</u>	±0.5	5	±2	±0.3	5-7	<u>±</u> 3	±1.5
b ₁ L/b ₀ L	-2.1043	6-7	±1	±0.5	6-7	±1	±0.3	8	±10	±1.5
b ₂ L/b ₀ L	-7.5331	8	±0.5	±0.5	8	±5	±0.3	9-13	<u>±3</u>	±1.5
		9	<u>±</u> 4	±0.5	9	<u>±2</u>	±0.3	14	<u>±6</u>	±1.5
		10-12	±0.5	±0.3	10	±4	±0.3	15-20	<u>±3</u>	±0.6
		13	±1.5	±0.5	11	±0.3	±0.3			
		14-16	±0.5	±0.3	12-13	<u>±2</u>	±0.3			
		17	±1.7	±0.5	14	±0.5	±0.3			
		18-20	±0.3	±0.3	15-16	±0.3	±0.3			
					17	±0.5	±0.3			
					18-20	±0.3	±0.3			

Magnet quantity and production

Magnet type	Symbol	installation (+spare)	
SR-dipole	SR-DM	48 (+2)	
SR-short quadrupole	SR-short-QM	192 (+3)	
SR-long quadrupole	SR-long-QM	48 (+2)	
SR-sextupole	SR-SM	168 (+6)	Development and
BR-BD dipole	BR-BD	42 (+1)	Buckley System Ltd (New Zealand)
BR-BH dipole	BR-BH	12 (+1)	
BR-pure quadrupole	BR-QP	36 (+5)	
BR-combined quadrupole	BR-QF	48 (+1)	
BR-sextupole	BR-SM	24 (+2)	
Double mini quadrupole-Q465	SR-Q465	6 (+1)	
Double mini quadrupole-Q565	SR-Q565	3 (+1)	Gongin Co., Ltd.
Transfer line magnet	BTS-QM	7 (1)	(Taiwaii)
(LTB/BTS)	BTS-DM	2 (1)	
	LTB-DM/QM	1 (1)/11 (2)	Danfysik A/S
Corrector	CV/CH and FFC	134 and 100	(Denmark)

- ✓ 96.2% of fabricated magnets are installed. Only 3.8% of fabricated magnets for the spare (include prototype magnet).
 - \rightarrow No more choice for the magnet installation

Field correction method

- ✓ A feet-shim method was used to shim the[™] mechanical and magnetic centers of quadrupole and sextupole magnet close to the ideal center.
- ✓ A yoke-shim method was used to reduce the octupole error (B_3L/B_1L) of initial several longquadrupole magnets because the pole profile inaccurately.
- ✓ The pole-shim method was used to correct the multipole error of sextupole magnet.

Ref: J. C. Jan, et. al., "Multipole errors and methods of correction for TPS lattice magnets", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, V24, NO. 3, 4100905 (2014).

Magnet manufacture and inspection

CMM: 3D coordinate measuring machine RCS: Rotating coil measurement system HPS: Hall probe measurement system

Magnetic measurement precision

HPS:

- ✓ The absolute field strength of Hall sensor has been calibrated by the Nuclear magnetic resonance & electron spin resonance system (NMR) → $\Delta B < 0.3 \text{ G}$
- ✓ The repeatable of field strength is better than 0.01%.

RCS:

- \checkmark The absolute field strength of RCS has been corrected by the HPS.
- ✓ The repeatable of main field strength of RCS is better than 0.01%.
- ✓ The repeatable of normalized multipoles of RCS is better than 0.3×10^{-4} . (n>2 is better than 0.1×10^{-4})
- \checkmark The repeatable and resolution of magnetic center offset measurement is better than 0.01 mm.

Mechanical error of magnet

	Design	Measure	Different						
	(mm)	(mean±sd, mm)	(mm)						
SR-dipole									
h_1	45.48	45.484±0.070	0.004						
DL_1^+	1026	1026.228±0.460	0.228						
	Short SR-quadrupole								
SQd	74	74.011±0.018	0.011						
SQg	24.6	24.611±0.018	0.011						
SQL ⁺	265	264.909±0.389	-0.091						
	La	ong SR-quadrupole	-						
LQd	74	73.995±0.016	-0.005						
LQg	24.6	24.601±0.020	0.001						
LQL^+	565	564.783±0.689	-0.217						
SR-sextupole									
Sd	78	**	-						
Sg	18.3	18.298±0.020	-0.002						
SL ⁺	227	226.997±0.315	-0.003						
		BR-dipole (BD)	-						
h_2	21.40	21.400±0.009	0						
h_3	23.84	23.845±0.010	0.005						
DL_2^+	1554	1553.885±0.207	-0.115						
		BR-dipole (BH)							
h_2	21.14	21.148±0.008	0.008						
h_3	23.64	23.650±0.008	0.01						
$\overline{DL_2^+}$	754	754.159±0.320	0.159						
	BR-quadrupole (pure)								
BQd	36	35.997±0.017	-0.003						
BQL^+	282	282.172±0.174	0.172						
+ Yoke length									
** No CMM date measured after pole-shim									

- ✓ The difference between the designed and machined values of the bore diameter (or pole high) is better than 0.011 mm.
- ✓ The difference between designed and machined value of the pole gap is better than 0.011 mm.
- ✓ The deviation of the laminate yoke length was controlled to be smaller than 0.1 % of the yoke length or one-piece thickness of lamina. Note: SR (BR) laminated by 1 mm (0.5mm) silicon steel.

Magnetic field performance of magnet

@3GeV	Spec.	Measure (mean±sd)						
SR-dipole								
b_0L -1.3201±0.0009								
	Short SR-quadrupole							
b_1L		-5.2160±0.0086						
B_2L/B_1L	±2.0	0.1±1.1						
B_3L/B_1L	±2.0	-0.2±0.7						
B_5L/B_1L	±0.8	-0.4±0.2						
	Lon	g SR-quadrupole						
b_1L		-9.4438±0.0087						
B_2L/B_1L	±2.0	0.0±0.9						
B_3L/B_1L	±2.0	-1.7±1.0						
B_5L/B_1L	±0.8	-0.3±0.3						
		SR-sextupole						
b_2L	120.216±0.306							
B_3L/B_2L	±2.0	0.0±1.1						
B_4L/B_2L	±3.0	0.3±1.3						
B_8L/B_2L	±0.5	0.4±0.1						
	BR	-dipole (BD/ BH)						
b_0L		-1.3173±0.0019/ -0.6589±0.0007						
b_1L		2.7719±0.0228/1.3922±0.0060						
b_2L		9.9088±0.4514/ 4.3942±0.1146						
BR-quadrupole (Q1)								
b_1L		Q1: 4.293±0.005						
B_2L/B_1L	±4.0	-1.4±3.0						
B_3L/B_1L	±4.0	-4.3±1.6						
B_5L/B_1L	±3.0	1.9±1.0						
Unit: $b_0 L$ (T·m), $b_1 L$ (T), $b_2 L$ (T/m), $B_n L / B_m L$ (×10 ⁻⁴)								

- ✓ The index n=0 is dipole term, n=1 is quadrupole term.
- ✓ The dispersion of the field strength is generally dominated by the error of bore diameter and the yoke length. The multipole errors are dominated by the asymmetric or machining error of the pole profile.
- ✓ The magnetic field quality of magnet is much better than the specifications.
- ✓ The SR and BR magnets have a great quality of the field because of the strict mechanical machining.

Ref: J. C. Jan et. al., "SUMMARY OF FIELD QUALITY OF TPS LATTICE MAGNETS", Proceedings of International Particle Accelerator Conference, Dresden, Germany (2014).

Magnet center inspection

	Measurement (mean value±sd)				
	short SR-quad.	long SR-quad.	SR-sext.		
Mechanical center offset-vertical (mm)	-0.002±0.004	-0.005±0.004	-0.002±0.004		
Mechanical center offset-horizontal (mm)	-0.005±0.006	-0.008±0.004	-0.005±0.005		
Magnetic center offset-vertical (mm)	0.003 ± 0.009	0.002 ± 0.007	0.005 ± 0.008		
Magnetic center offset-horizontal (mm)	0.006±0.011	0.007 ± 0.009	0.005 ± 0.009		
Mechanical tilt (deg.)	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.01		
Magnetic tilt (deg.)	0.00±0.01	0.00±0.01	0.01±0.01		

- ✓ The mechanical center offset was shimmed better than ± 0.01 mm in both vertical and horizontal directions.
- ✓ The magnetic center offset was measured better than ± 0.02 mm in both vertical and horizontal directions after feet-shim.
- ✓ The mechanical and magnetic tilt of magnet is better than 0.01° after feet-shim.

NSRRC

Closed Orbit of TPS Storage Ring

Without any corrector applied

- ✓ The closed orbit distortion (COD) measurement without any corrector: 1.78 mm (rms) horizontal and 1.04 mm (rms) vertical after the LOCO and BBA.
- \checkmark The COD results demonstrate very high quality of magnets and the girder alignments.

Ref: C. C. Kuo et. al., "Commissioning of the Taiwan Photon Source", TUXC3, this proceeding. T. C. Tseng et. al., "The Auto-Alignment Girder System of TPS Storage Ring", THYB2, this proceeding.

Chamber permeability studies of Booster ring

- ✓ Elliptical chambers are cold-drawn from circular tube of stainless steel (SUS304). The relative permeability (μ_r) of the vacuum chamber appeared after the drawing process.
- \checkmark An annealing process was used to eliminate the permeability of the BR chamber.

Ref: I. C. Sheng et. al., "Demagnetized Booster Chambers in TPS", WEPHA049, this proceeding.

Chamber permeability inspection

- ✓ A two-step test of the chamber permeability: (1) a quickly scan of the chamber by the NbFeB permanent magnet and (2) the magnitude measurement by the HPS.
- ✓ NbFeB permanent magnet: $6 \text{ mm}(D) \times 2 \text{ mm}(t) \times 2 \text{ g}(w)$ with 0.25 T field strength.
- \checkmark The relative permeability of the BR chamber is less than 1.01 after annealing.

Field distortion from the un-annealed chamber

- ✓ An un-annealed chamber was measured to understand the field distortion in the BR dipole (combined-function) magnet.
- ✓ The field distortion increases with decreasing excitation current in the un-annealed chamber indicates that the electron beam at low energy will be perturbed seriously due to the effect of un-annealed chamber in the BR.

- ✓ The machining error of the pole profile of a TPS magnet is better than 0.02 mm as manufactured with the CNC and WEDM techniques. The multipole errors of these magnets thereby conform to the strict requirements of the spec.
- ✓ A precise mechanical and magnetic center was shimmed and measured with the CMM and RCS. The mechanical center offset was shimmed better than ±0.01 mm in both vertical and horizontal directions.
- ✓ The magnetic center offset was better than ±0.02 mm in both vertical and horizontal directions after feet-shim.
- ✓ The mechanical and magnetic tilt of magnet is better than 0.01° after feetshim.
- ✓ The permeability of the BR chamber was less than 1.01 after heat treatment.
- ✓ A serious distortion of the field from the un-annealed chamber was observed, indicates that the electron beam at low energy will be perturbed seriously due to the effect of un-annealed chamber in the BR.

The First Synchrotron Light from TPS Storage Ring December 31, 2014

Thanks for your attention