

LHC Injectors Upgrade

Chromaticity Effects for Space Charge Dominated Beams in the CERN PS Booster

IPAC15 – Richmond, USA – May, 5th 2015 Proceeding ID: TUAB3

Vincenzo Forte CERN, Geneva, Switzerland (BE-ABP-HSC) Université Blaise Pascal – Clermont Ferrand – France (Ph.D. student) E. Benedetto, F. Schmidt CERN, Geneva, Switzerland (BE-ABP-HSC)

Acknowledgements: The CERN Space Charge Working Group, The PSB OP team

The CERN PS Booster (PSB)

The CERN PS Booster (PSB)

4 rings PSB Circumference: 157m AD Super-periodicity: 16 CNGS Injection: Multi-Turn p+ -> H-EASTA EASTB Injection energy: 50 MeV -> 160 MeV EASTC Extraction energy: 1.4 GeV -> 2 GeV LHCINDIV Cycle length: 1.2s LHCPROBE LHC 100ns SB # bunches: 1 x 4 Rings LHC 25ns DB A **RF cavities: h=1+2, h=16** LHC 25ns DB B LHC 25ns H9 A & B Tunes at injection (Qx, Qy, Qz): ~ 4.3, 4.5, 1e-3 LHC 50ns DB A & B Natural chromaticity (ξx, ξy): -0.8, -1.6 LHC 50ns SB Rev. freq. (@160 MeV): 1MHz LHC 75ns SB MTE # protons/bunch: 1e11 to 1e13 NORMGPS-HRS H. Emittance: 1 to 15 um SFTPRO V. emittance: 1 to 9 um STAGISO 1.4Gev STAGISO 1Gev L. emittance: 0.8 to 1.8 eVs TOF

Space Charge ΔQ > 0.5 @ injection

Reasons for the study

- The CERN PSB works without chromaticity correction.
- Space charge is a concern in the PSB now and in the future upgrade scenario to not exceed the present 0.5 tune spread.
- Simulations (through PTC-Orbit) and ad-hoc measurements studies show that the chromaticity has an impact in the tune spread for space charge dominated beams.
- The correction of the chromaticity, avoiding coherent instabilities, could be helpful to improve brightness for the LHC upgrade scenario.
- We will discuss:
- Tune spread and chromaticity
- Two experiments for code/measurements benchmark
 - LHC High Brightness prediction

Tune spread and chromaticity*

<u>*reference: V. Forte et al., 6D Tunes Computation For Space Charge</u> Dominated Beams, Nuclear Instruments and Methods (to be published)

Chromaticity Effects for Space Charge Dominated Beams in the CERN PS Booster <u>Vincenzo Forte</u>, E. Benedetto, F. Schmidt – IPAC15 – 05/05/2015

Tune spread and chromaticity*

Chromaticity Effects for Space Charge Dominated Beams in the CERN PS Booster <u>Vincenzo Forte</u>, E. Benedetto, F. Schmidt – IPAC15 – 05/05/2015 *reference: V. Forte et al., 6D Tunes Computation For Space Charge Dominated Beams, Nuclear Instruments and Methods (to be published)

Chromaticity change in the PSB

- Through normal chromatic sextupoles, one per period.
- Only one family available -> Coupled control

Motion of particles with very large synchrotron oscillation

Motion of particles with very large synchrotron oscillation

Motion of particles with very large synchrotron oscillation

Two experiments for negative chromaticity quadrants

- 1. Touching the 3Qy=13 line with upper part of the footprint
- 2. Touching the horizontal integer resonance

Chromaticity Effects for Space Charge Dominated Beams in the CERN PS Booster <u>Vincenzo Forte</u>, E. Benedetto, F. Schmidt – IPAC15 – 05/05/2015

• 163 MeV flat top

- 3Qy=13 excited through skew sextupole
- Tune scan at Qx=4.2, Qy=4.31...4.34

• Chromaticity ramps (measurements)

• Measurements @320e10 p.

Tune Qv = 4.31

• Measurements @320e10 p.

• Measurements @320e10 p.

• Measurements @320e10 p.

Tune Qv = 4.34Intensity [a. u.] 0.8∟ 480 500 540 520 560 580 600 620 640 Ctime [ms] $-\xi_{v} = -1.81 - \xi_{v} = -2.06 - \xi_{v} = -2.53 - \xi_{v} = -2.82$ -1 480 500 520 540 580 620 640 560 600 Ctime [ms] Benchmark with simulations is on-going

 Q_{y} = 4.34 / ξ_{y} = -2.82

Bunch shortening

Two experiments for negative chromaticity quadrants

- 1. Touching the 3Qy=13 line with upper part of the footprint
- 2. Touching the horizontal integer resonance

The horizontal integer resonance Qx=4

Initial beam parameters	(ξ _x , ξ _y)=(-0.73, -1.7)	(ξ _x , ξ _y)=(-0.15, -2.8)
Bunch populations [10 ¹¹ p]	6.95	
$\epsilon_{x}^{*}, \epsilon_{y}^{*}$ [mm mrad]	1.66, 1.6	1.68, 1.59

Tune spreads for different chromaticities

The horizontal integer resonance Qx=4

- The normalized emittance blow-up is present in both cases, but always higher with bigger horizontal chromaticity.
- PTC-ORBIT simulations and measurements show the same trend.

The horizontal integer resonance Qx=4

• In both cases the beam loses the initial Gaussian shape in the first 5 ms.

Simulations with (ξ_x, ξ_y) =(-0.73, -1.7)

LHC High Brightness prediction

The brightness for the LHC beams is defined in the PSB!

LHC High Brightness prediction 0.85 0.8 0.75 $\varepsilon_x \xi = (-0.8, -1.6)$ $\varepsilon_x \xi = (-0.15, -2.8)$ [mm mrad] 0.7 0.65 0.6 $\frac{1}{2}$ 0.55 $\varepsilon_y \xi = (-0.8, -1.6)$ $\varepsilon_y \xi = (-0.15, -2.8)$ 0.5 0.45 0.4 2 5 3 7 6 0 4 time [ms]

Results

- Few % blow-up reduction in the horizontal plane.
- Same relative blow-up increase in the vertical plane.
- Coupled control of ξx, ξy
 - An intermediate chromatic working point could give better results.
 - Study effect to correct both ξ_x , ξ_y , i.e. by adding 1 family of sextupoles.

Highlights

- The **relation between chromaticity and incoherent tune spread with space charge** has been shown in simulation for the PSB.
 - Chromatic particles follow **different tune patterns** depending on the chromaticity values.
- Since the PSB works with natural chromaticity, this effect is **significant**.
- V&H chromaticitiy control is coupled in the PSB through the unique normal sextupoles family.
- A benchmark between measurements and simulations is on-going for the following case:
 - Excitation of the upper part of the spread through the **3Qy=13 resonance**.
 - Preliminary measurements for the 3Qy = 13 case show an increase of losses for increased vertical chromaticities.
- A complete comparison measurements vs. simulations has been proposed for the following case:
 - The **Qx=4 resonance**.
 - Simulations and measurements show **dependence of the emittance blow-up with the chromaticity**.
- An attempt of prediction for the upgrade scenario has been presented.
 - **Coupled control of chromaticity limits the gain** in term of beam brightness.
 - Intermediate chromatic points may improve the results.
 - Studies should be done correcting both the chromaticities and including coherent effects.

Thanks for your attention

vincenzo.forte@cern.ch