‡Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

High Q Developments

Anna Grassellino

Fermilab

IPAC 2015, Richmond, Virginia

Outline

- Two recent breakthroughs have systematically and reproducibly changed the quality factor of niobium SRF cavities:
 - 1. Nitrogen doping
 - From discovery to cryomodule ready/transfer to industry ready technology (LCLS-2)
 - Why does it work? What is known and yet unknown (samples characterization, cavity measurements, theoretical models...)
 - 2. Efficient Magnetic Flux Expulsion via fast cooling
 - Discovery and progress in understanding with bare cavities
 - Practical implementation of lessons learned in cryomodules

Superconducting RF cavities

- <u>Niobium</u> is the material of choice (superconducting below 9.2K)
- Depending on different machines/applications:
 - Fundamental mode f = 50 MHz 10 GHz
 - Operating temperature T = 1.8K to 4.2K
 - Achievable accelerating gradients ~50 MV/m

🛟 Fermilab

SRF cavities – advantages

- Wall dissipation (proportional to surface resistance R_s) is reduced by many orders of magnitude over a normal conducting copper cavity
- Among highest quality factors Q in nature
 - Q>10¹¹ achieved, Q=2x10¹⁰ routine
- Affordable continuous wave and long pulse gradients
 - Field=acceleration can be ON all the time
- Larger aperture gives better beam quality

SRF cavities figures of merit: efficiency (Q) and quench field

5/4/2015

What matters for SRF performance? Relevant scale is the nanoscopic

5/4/2015

Superconductivity: DC case

Superconductivity RF case- Small Non-Zero Resistance

²rdSsellino | High Q De9eKpments

^{5/4/2015}

9 Grassellino | High Q Developments

5/4/2015

10 Grassellino | High Q Developments

5/4/2015

11 Grassellino | High Q Developments

5/4/2015

5/4/2015

5/4/2015

5/4/2015

N doping: results for LCLS-2, progress in understanding

Nitrogen Doping: a breakthrough in Q

5/4/2015

Doping Treatment: small variation from standard protocol, large difference in performance

Doping Treatment: small variation from standard protocol, large difference in performance

Example from a doping process developed

The importance of a high Q technology – the case of the CW machine LCLS-2

- N doping technology allows significantly lower refrigeration costs (capital, operating)
- Larger margin and possibility for an energy upgrade for same refrigeration cost

See also WEYC1 Technical Challenges of LCLS-II 5/4/2015 Tor Raubenheimer

🚰 Fermilab

The High Q Collaboration for LCLS-II

- FNAL, Cornell, Jlab and SLAC together with one goal: bring the N doping technology from single cell R&D to nine cell production ready technology
- Technology transferred to FNAL to Cornell and Jlab; now is being transferred to industry, that will employ it in production stage for LCLS-II
- Target Q : 2.7e10 at 2K, 16 MV/m (1.3 GHz) almost twice the state of the art (XFEL)
- High Q collaboration team leads:
 - SLAC M. Ross (coordinator)
 - Jlab C. Reece
 - Cornell M. Liepe
 - FNAL A.Grassellino

A. Crawford et al, WEPRI062, IPAC14

From single cell R&D to cryomodule ready technology: the two LCLS-II prototype cryomodules (FNAL and Jlab)

It is the highest average Q ever demonstrated in vertical test for 1.3 GHz nine cells at 2K, 16 MV/m in the history of SRF (larger than a factor of two the state of the art)

5/4/2015

N doping applied to 650 MHz cavities at FNAL Q~ 7e10 at 2K, 17 MV/m – record at this frequency!

Applying N doping to 650 MHz (beta=0.9) leads to double Q compared to 120C bake (standard surface treatment ILC/XFEL)

辈 Fermilab

What does the N treatment do? N doping profiles via SIMS

Surface Nitrides (post bake, pre-EP) – imaged by SEM

Flat Nb sample baked at 800° for **2 min with N**₂ + 6 min annealing

Flat Nb sample baked at 800C° for 20 min with N₂ + 30 min annealing

Bad (poorly SC) nitride phases that need to be removed via EP

Room T TEM on post gas bake, pre-EP surface (2/6 recipe)

a) µm-sized areas of "uniform" contrast in near-surface show only Nb reflections

Courtesy of Y. Trenhikina, FNAL

b) few Nb nitrides-features
(Nb₂N reflections) in Nb
near-surface. Nitride
"teeth" go ~0.2 μm deep

Room T TEM on N doped surface AFTER EP

- Preliminary: <u>no</u> visible Nb nitrides-teeth in near-surface show only Nb reflections
- Confirms that root of improvement is from nitrogen as interstitial in the lattice

Cryogenic TEM on N doped surface AFTER EP

ROOM T

90K

Preliminary: large near-surface area is affected by Nb nanohydride precipitation! But different than typical: closely spaced, very small/thin Nb hydrides.

Nanohydrides in standardly treated samples: Trenikhina et. al. J. of Appl. Phys., 117, 154507 (2015).

Physics – perceived BCS limit has been overcome

A. Grassellino et al, 2013 Supercond. Sci. Technol. **26** 102001 (Rapid Communication) A. Romanenko and A. Grassellino, Appl. Phys. Lett. **102**, 252603 (2013)

5/4/2015

🚰 Fermilab

Models for explaining N doping R_{BCS}(B)

- B.P. Xiao, C. Reece, M. J. Kelley from JLab and College of William and Mary
 - Momentum of Cooper pairs leads to an inversed field dependence of R_{BCS} ?
 - [B.P. Xiao et al, Physica C 490 (2013) 26-31]
- <u>A. Gurevich</u> from ODU
 - Time-dependent density of states leads to the effect?
 - [A. Gurevich, Phys. Rev. Lett. **113**, 087001 (2014)]

Open questions: nature of premature quench in N doped

Grassellino | High Q Developments

32

Efficient magnetic flux expulsion via fast cooling

33 Grassellino | High Q Developments

Magnetic flux lines can be trapped and cause large RF losses

Trapped vortices imaged via Bitter Decoration

Enhanced sensitivity to magnetic field of N doped

D. Gonnella and M. Liepe. Cool Down and Flux Trapping Studies on SRF Cavities. Proceedings of LINAC 14, Geneva, Switzerland. MOPP017.

At FNAL, discovered that slow cooldown can kill high Q

A. Romanenko, A. Grassellino, O. Melnychuk, D. A. Sergatskov, J. Appl. Phys. 115, 184903 (2014)

5/4/2015
Magnetic probes revealed the new physics

Full expulsion of the magnetic field should increase the field at equator ~2 times when going superconducting

2 x H It turns out the expulsion efficiency can be controlled by the cooldown procedure through Tc=9.2K (fast/slow, uniform or not)

Record Q up to the highest fields combining N doping and efficient flux expulsion

A. Romanenko, A. Grassellino et al. J. Appl. Phys. 115, 184903 (2014) A. Romanenko, A. Grassellino et al. Appl. Phys. Lett. 105, 234103 (2014)

5/4/2015

🚰 Fermilab

It's a matter of thermogradient along the cell (at the phase front) – and geometry of the problem has an effect, too...

A. Romanenko, A. Grassellino, A.Crawford, D. A. Sergatskov, Appl. Phys. Lett. 105, 234103 (2014)

M. Martinello et al, arXiv:1502.07291

Fermilab

Details of superconductivity nucleation matter

Fast cooldown – well-defined superconducting/normal boundary is moving from bottom to the top => <u>no</u> <u>energy barrier</u> for flux to be expelled

Details of superconductivity nucleation matter

Slow uniform cooldown – superconductivity is nucleated at multiple spots which reach T<Tc Flux surrounded by superconducting areas has an energy barrier for escape=> more flux trapping is possible

T-map apparatus

- Cornell-based T-map system
- 36 boards with 16 thermometers each

576 thermometers all around the cavity

T-map images M. Martinello and M. Checchin PhD thesis work (FNAL)

M. Martinello and M. Checchin PhD thesis work (FNAL)

Fast Cool-down T-map

Starting T: 250K

44 Grassellino | High Q Developments

M. Martinello and M. Checchin PhD thesis work (FNAL)

Slow Cool-down T-map

Starting T: 12K

61 Grassellino | High Q Developments

70 Grassellino | High Q Developments

5/4/2015

Slow Cool-down From 12K

Slow Cool-down From 12K

5/4/2015

Slow Cool-down From 12K

Grassellino | High Q Developments 86

Slow Cool-down From 12K

5/4/2015

Bringing these very High Q all the way down into the tunnel

SRF cavity in its liquid helium filled tank: operating at 2 degrees above absolute zero (-456 deg F)

Cryogen fill pipe

LCLS-2 cavities dressed with instrumentation inside vessel

-les flange

Sweeping the flux into the beampipes via fast cooling

5/4/2015

TB9AES027

Horizontal dressed cavity tests at FNAL, Cornell, Jlab Meeting final LCLS-2 specs in cryomodule environment!

5/4/2015

Conclusions

- Tremendous progress in the past two years in understanding of contributors to RF surface resistance
- Record Q achieved from bare cavity tests all the way down to cryomodule environment, by implementing N doping and understanding of flux expulsion via efficient cooling through Tc
- High Q at high gradient via doping is the frontier to be explored, the next battle already ongoing
- LCLS-2 nominal exceeded in vertical and horizontal test at three different institutions
- LCLS-2 has helped nurturing and developing a new high Q technology

Scale Up versus Scale Out

- Scale-out of available technologies without advancement leads to unsustainable and inadequate performance
- Mandatory to use large projects to develop new technologies

Sustainability

Failure rate 80% Failure rate 80% Failure rate 70% Failure rate 60% Fault recover time 3.5h 5.2h 6.9h 8.6h 10.4h 12.1k Availability

Economy

Cost effective operation: Personnel and material resources Energy efficiency Number of subsystems requires breakthrough in reliability, availability Diversify technology sources to control risk Economic return to society is mandatory

M. Benedikt, CERN, FCC week 2018

Thank you

100 Grassellino | High Q Developments