LHC Commissioning at Fligher Energy

CERN Prévessi

On Behalf of the whole LHC Team & International Collaborators

Paul Collier, Beams Department, CEIRN

LICE

ATIA

Outline

- > Run 1 Recap
- > Long Shutdown 1
- > Cool-down & Powering Tests
- > Preparing for Beam
- > Beam Commissioning

Acknowledgements

- $\circ~$ To the many people who worked on the machine during LS1
- The teams from inside and outside CERN who contributed to the Hardware Commissioning and individual system tests
- \circ $\,$... and the LHC teams who are working on the Beam Commissioning

All of whom have freely lent me information for this talk.

Performance, 2010-2012

CMS Integrated Luminosity, pp

2010: 0.04 fb⁻¹
7 TeV CoM energy
Commissioning
2011: 6.1 fb⁻¹
7 TeV CoM energy
Exploring the limits
2012: 23.3 fb⁻¹
8 TeV CoM energy
Production

May 4th 2015

5

LS1 Main Activities

- Repair and consolidation of the magnet interconnections,
- Replacements of 'weak' magnets,
- Relocation of electronics to reduce the impact of radiation (Single Event Upsets),
- General maintenance of the cooling-ventilation system and of the cryogenic plants,
- **Upgrades**, changes and fixes in essentially all systems !

After LS1 we have a 'new' machine (but with experience on how to run it !)

The Main LHC Consolidation

1255 SVAC/9

May 4th 2015

LHC Status P. Collier, CERN

to bring the total to

1344

7

main electrical feed-

boxes

13kA Busbar Splices

« Cables »

« New Splice »

- Total interconnects in the LHC:
 - 1,695 (10,170 high current splices)
- Number of splices redone: ~3,000 (~30%)
- Number of shunts applied: > 27,000

« Consolidated Splice »

« Insulation box »

Magnet Exchange

□ 18 cryo-magnets were exchanged:

- Large internal resistance @ 1.9 K.
 - Confirmed by inspections: imperfect soldering.
- Problems with quench protection, electrical isolation.
- 15 additional magnet will be exchanged in LS2 (2018).

Unexpected Issues

After warm up a problem was diagnosed on some bellows inside the Cryogenic Feed Boxes (DFB).

Bellows were found 'imploded' on 4 of them, 2 requiring repair on the surface in a workshop.

 Cold Helium most likely diffused (through cracks in the welds) between the sheets of the multisheet bellows. During warm up the Helium was trapped, building up an over-pressure that ruptured the bellows.

Cool Down

ESS N 407

Copper Stabiliser Continuity Measurement (CSCM)

255 SV102

- Each of the large dipole and quadrupole circuits have a large number of discontinuities which can be external or internal to the magnets.
 - The 8 dipoles circuits have ~28'000 discontinuities !
- The discontinuities between magnets (interconnects) as well as the bypass diodes of the quadrupoles were checked and consolidated during LS1.
- **The main unchecked discontinuities were in the dipole bypass diodes.**
 - New test developed to test the whole of the bus-bar part of the circuit CSCM

CSCM Tests

The CSCM is a test to fully qualify the complete bus-bar of the main dipole circuits and *ensure* that the current can safely bypass the magnets in case of a quench.

- Stabilize a sector around 20 K, *the magnets and bus-bars are not superconducting*.
- > Reconfigure the power converters: 2, 6kA/200 V in series (\rightarrow 400V)
- Use a Voltage pulse to fire all the diodes in the circuit
- > Send a current pulse of up to 11 kA (then decay with τ = 100s).
- ➤ Excessive resistance leads to thermal run-away and increasing voltage → observe voltages over interconnections.

- Type test in one sector before LS1, Three bad interconnections were localized.
- Systematic validation of all sectors after LS1. All good!

Preparing for Beam

Powering & HWC :

Covers SC and Warm Magnet circuits (& associated protection systems) Individual System Tests:

♦ Everything else. E.g. RF, BI, Vacuum, Injection & Dump systems,
 Dry Runs:

♦ Integration of systems into operational processes

Powering Tests

VIE W

 Electrical Quality Assurance (ElQA = check of insulation integrity) followed by a series of current cycles to test the powering interlocks, the protection functionality and the capability of all magnets to reach the requested current

Example of the testing flowchart for the RB circuits

A total of more than 6000 interlock test steps + 11,000 test steps with current in about 5 months!! What was tested? Almost 1600 circuits > 24 Main circuits > 8 dipoles > 16 quadrupoles

- > 8 Inner Triplets
- 94 Individually Powered4-6 kA circuits

 - ♦ 16 IPDs
- > 410 x 600 A circuits
- > 284 x 80-120A circuits
- 752 x 60 A circuits

Powering Tests

NE TO S

 Electrical Quality Assurance (ElQA = check of insulation integrity) followed by a series of current cycles to test the powering interlocks, the protection functionality and the capability of all magnets to reach the requested current

Example of the testing flowchart for the RB circuits

A total of more than 6000 interlock test steps + 11,000 test steps with current in about 5 months!! What was tested? Almost 1600 circuits > 24 Main circuits > 8 dipoles

- 4 16 quadrupoles
- > 8 Inner Triplets
- 94 Individually Powered
 4-6 kA circuits

♦ 16 IPDs

- > 410 x 600 A circuits
- 284 x 80-120A circuits
- 752 x 60 A circuits

Powering Tests

56. VI. 60

Dipole Training Campaign

26.V282

Sector	# Training quench	Flattop quenches			
S12	(7)	0			
S23	17	0			
S34	15	1			
S45	(51)	0			
S56	16	3			
S67	22	1			
S78	19	3			
S81	29	0			
Total	171	8			

Large variation in number of training quenches per sector, between 7 and 51 quenches!

Detailed Analysis in Progress!

Each Sector Trained to 6.56TeV (11080A) (100 A above the operational field)

A few quenches at flat top, after training

Quench Propagation

Typical quench event during the HWC campaign (sector 8-1, position C30)

- 154 magnets in series
- Quench in a magnet triggers energy extraction opening. Current in the circuit decays exponentially with τ = 100 s.
- Negative inductive voltage across each <u>superconducting magnet</u>.
- Positive voltage across <u>quenched</u> <u>magnet</u> when current goes through bypass diode.

Typically a training quench is followed by secondary quenches through heat propagation.

ESS SVAC/G

PER MINUNA

Diode Short-Circuit

255 NV 40

May 4th 2015

Next Steps

Service 2

Discharge Set-Up

ESS SVAC/G

How It Worked

Energy dissipated in short:

Short resistance:

906 V to 578 V ~1 Ohm ~500 J

Tek

Burning discharge

Discharge stops at ~578V

RL:2.0N

Dry Runs

RF Synchronization & Frequency Ramp

2 A W A W

	-	🔯 🔻 REA: Ihcop					
		Freq for Beam 1	00.789733 MHz		SES		
ACSCA.1B1.VOLTAGE 1	ACS	Freq for Beam 2	00.789733 MHz		TAGE 1	ACSCA.1B2.VOLTAGE O	ACSCA281.COUPLER
CSCA2B1.VOLTAGE_I	ACS	FGC Output Select	ame frequency ON		TAGE_I	ACSCA282.VOLTAGE_Q	ACSCA3B1.COUPLER
CSCA3B1.VOLTAGE_I	ACS				.TAGE_I	ACSCA.3B2.VOLTAGE_Q	ACSCA4B1.COUPLER
CSCA.4B1.VOLTAGE_I	ACS				TAGE_I	ACSCA.4B2.VOLTAGE_Q	ACSCA 5B1.COUPLER
CSCA5B1.VOLTAGE_I	ACS				.TAGE_I	ACSCA.5B2.VOLTAGE_Q	ACSCA.6B1.COUPLER
CSCA.6B1.VOLTAGE_I	ACS				.TAGE_I	ACSCA.6B2.VOLTAGE_Q	ACSCA7B1.COUPLER
CSCA.7B1.VOLTAGE_I	ACS				.TAGE_I	ACSCA.7B2.VOLTAGE_Q	ACSCA8B1.COUPLER
CSCA.8B1.VOLTAGE_I	ACS				.TAGE_I	ACSCA.8B2.VOLTAGE_Q	ADTH.1B1.COEFF_B1
ADTH.1B1.COEFF_B2		Console			HIFT_1	ADTH.1B1.PH_SHIFT_2	ADTH.1B2.COEFF_B1
ADTH.1B2.COEFF_B2		15:50:38 - Subscription	received for LHCALLR/FreqProg/-	Acquisition	HIFT_1	ADTH.1B2.PH_SHIFT_2	ADTH.2B1.COEFF_B1
ADTH.2B1.COEFF_B2		15:50:39 - Subscription 15:50:39 - Subscription	received for LHCALLR/FreqProg/: received for LHCALLR/FreqProg/.	Acquisition	HIFT_1	ADTH.2B1.PH_SHIFT_2	ADTH.2B2.COEFF_B1
ADTHL2B2.COEFF_B2				*	HIFT_1	ADTH282.PH_SHIFT_2	ADTV.1B1.COEFF_B1
ADTV.1B1.COEFF_B2		10:12:32 - Registering RDA	Subscription Filter JMX Inte	7	HIFT_1	ADTV.1B1.PH_SHIFT_2	ADTV.1B2.COEFF_B1
ADTV.1B2.COEFF_B2	Ā	DTV.1B2.DELAY	ADTV.1B2.GAIN	ADTV.1B2.PH	SHIFT_1	ADTV.182.PH_SHIFT_2	ADTV.2B1.COEFF_B1
ADTV.2B1.COEFF_B2	Α	DTV.2B1.DELAY	ADTV.2B1.GAIN	ADTV.2B1.PH	SHIFT_1	ADTV.2B1.PH_SHIFT_2	ADTV.2B2.COEFF_B1
ADTV.2B2.COEFF_B2	А	DTV.2B2.DELAY	ADTV.2B2.GAIN	ADTV.2B2.PH	SHIFT_1	ADTV.282.PH_SHIFT_2	ALB.B1.FPROG
LB.B1.FPROG_COARSE		ALB.B1.PL_GAIN	ALB.B1.RL_GAIN	ALB.B1.S	L,A	ALB.B1.SL_GAIN	ALB.B1.SL_TAU
ALB.B1.STABLE_PHASE		ALB.B2.FPROG	ALB.B2.FPROG_COARSE	ALB.B2.FPROG_COARSE_B		ALB.B2.PL_GAIN	ALB.B2.RL_GAIN
ALB.B2.SL_A		ALB.B2.SL_GAIN	ALB.B2.SL_TAU	ALB.B2.STABL	E_PHASE	DELETE.T	

LINEAN ADTYZEJACIAN ADTYZEJACIA

Last data point: 08-05-2014 15:13:35 UTC

40.079.000,0 40.078.900.0 Next 40.078.800,0 LHC RF 40.078.700,0 ramps frequency sync 40.078.600,0 down to ramp 40.078.500,0 injection 40.078.400.0 14:10 14:40 14:45 15:05 15:10 15:15 14:20 14:25 14:30 14:35 14:50 14:55 15:00

Proton and ions frequency settings for 6.5 TeV ramp

Ensure:

- Frequency is properly received by the experiments
- Resynchronisation of beam control successful.

CONVERSE S

May 4th 2015

LHC Status P. Collier, CERN

LHC Status P. Collier, CERN

Final Preparations: Cold Checkout

KSS 50401

First Cycle of the Complete Machine

Beam Interlock Loop Closed

Talk about last minute! ... the night before first beam!

LHC Status P. Collier, CERN

2015 Commissioning Strategy

	Start LHC o with beam	omr	nissioning										Scrubbing	for 50 ns
	Apr					May			June					
Wk	14		15	16	17	18	19	20	21	22	23	24	25	26
Мо		30	Easter Mon 6		13 2	0 27		ı 11	18	Whit 25	1	8	15	22
Tu												un		*
We			Injector TS		Recommissi	oning with b	eam					hysic	TS1	
Th	ne out							Ascension				ecial p		
Fr	ug. Had	y				1st May						Spe		
Sa	2 5													
Su		·												

- \diamond itensity commissioning of full cycle – 8 weeks LO
- First stable beams low number of bunches Dec \diamond
- Special physics: LHCf and Luminosity Calibration
- Scrubbing for 50 ns \diamond
- Technical stop TS3 Intensity ramp-up with 50 ns \diamond IONS Characterize vacuum, heat load, electron cloud, losses, instabilities, UFOs, impedance

lons

setup

- \diamond Scrubbing for 25 ns
- Ramp-up 25 ns operation with relaxed beta* (80cm), but commission to 40cm \diamond
- 25 ns operation ing with beam \diamond

Special physics runs (indicative - schedule to be established)

End physics

52

First Beam: 5th April

First Beam: 5th April

Monitor V

LHC Status P. Collier, CERN

First Beam: 5th April

LHC Status P. Collier, CERN

SV202

State C

SV:AZ

Beam at 6.5 TeV

In 3 hours bunch length at 6.5 TeV drops from 1.25 ns to 1.07 ns in a 12 MV bucket. Pilot intensity & negligible intensity loss. Comparison with simulations including IBS and SR show that indeed is caused by SR.

First Beam at 6.5 TeV !

Later, first observation of Synchrotron Radiation Damping with Protons

CERN

Not everything is plain sailing! Aperture in 15R8

Initial Situation

- ♦ Multiple loss events after a short time at 6.5 TeV compatible with particles falling into the beam
- $\diamond~$ Loss patterns point to a specific position in the middle of a dipole magnet

- ♦ Aperture scans do not show a restriction
- ♦ Much less activity at injection

Beam screen warmed to ~80K in this half cell and kept there for several hours before re-cooling.

Aperture in 15R8 (2)

...Clear Aperture restriction seen

- Measured at injection and 6.5 TeV
- UFO stopped then restarted
- ♦ Probably not a limiting aperture for operation
- ♦ But stability of the object remains a concern

...to come

 \diamond How does it behave with higher intensities?, bunch trains?

A very active area of study at the moment!

-20

-25

-20

-10

10

0

20

x [mm]

Conclusions

LHC Is Back!

- An enormous amount of work was achieved during LS1, thanks to the efforts of many people
- Re-commissioning of the circuits went well even though we had some surprises!
- Training of the magnets roughly according to expectations –
 deeper analysis is now needed to understand the behaviour
- Initial commissioning went well
- o ... Some surprises here too!

... And (Hopefully) Still on Schedule to deliver Physics in June

- \circ $\,$ Initially low luminosity and special runs $\,$
- Then 50ns intensity ramp up (~ 1fb-1)
- Switch to 25ns during the summer
- First Pb-Pb at the end of the year.

