

Overview of Beam Instrumentation for the CADS Injector I

Sui yanfeng On behalf of CADS injector I BI group

P 國 科学 院為 能 物 好 加完 揃 Institute of High Energy Physics Chinese Academy of Sciences

Content

- Introduction of CADS
- Beam instrumentation of CADS injector I
- Commissioning tools for RFQ and TCM
- Conclusion

Introduction

Introduction

- Particle: proton
- RF frequency: 325 MHz
- Output energy: ~10 MeV
- Peak current: 10 mA
- Repetition rate: CW
- Beam power: 100 kW

Beam instrumentation of CADS injector I

Device	Accuracy	Resolution	Quantity
Beam position monitor	\pm 100um	30um	25
Wire scanner	\pm 0.5mm	50um	4
Beam emittance unit	10%	-	2
Beam current monitor	1.5%	0.01mA	9
Beam loss monitor	1%	-	8
Beam energy monitor	\pm 1deg	0.5deg	3
Ionization beam profile monitor	1mm	200um	1
Electron scanner	1mm	300um	1 5

Beam position monitor

- Total of 25 BPMs will be installed along the Linac, including 14 Cold-BPM
- The warm BPM pickups are strip line
- The BPMs are installed in Q-magnets due to limited space

Beam position monitor

- Cold BPM pick-ups are buttons due space limitation
- Installed between SCQ magnet and SRF cavity
- Several times cold test with liquid nitrogen (300K-80K) before installed check feed through and bellows

Beam position monitor

- Beam test
 - Effective signal Vp-p~150mV
- Electronics
 - Libera single pass –H
 - Also for machine protection

- Beam Current Monitors system is composed of AC Current Transformers (ACCT), Fast Current Transformers (FCT) and DC Current Transformers (NPCT).
- LEBT composed 1 NPCT monitoring the ion source; 1 ACCT at the entrance of RFQ measuring the beam transmission in the RFQ with another ACCT installed at the MEBT1
- MEBT1 including 2 FCT to measure the beam energy of the RFQ.

- 2 FCTs in MEBT2 to measure the beam energy of TCM (CM1 and CM2) ,1 NPCT for beam DC current monitor
- All CTs are standard products and calibrated before installation

Test bench of FCT and ACCT Calibration of DCCT

Beam test

- Readout system
 - NPCT Based on PCI-4070+LABView+EPICS
 - ACCT Based on PCI-6120+LABView+EPICS

- Beam energy measurement
 - Beam energy is measured with the aid of FCT based on the TOF (Time-OF-Flight) method

Beam emittance measurement

- Double-slit meter was chosen for its adaption to different beam conditions and the robustness
- The first slit is 0.2mm, the tungsten plated on stainless steel with cool water
- The heat load is simulated with the duty factor 0.1%
- The distance between two slit is about 300mm
- The second slit is 0.1mm, and a faraday cup at the downstream

Example of beam emittance

Beam profile monitor

- The wire scanner with three tungsten wires (H,V,U) mounted on fork is used
- Beam pulse frequency is reduced to 10Hz and the beam pulse length reduced to 100us or less to ensure the wire safe.
- The motion control and DAQ based on PXI

X方向-Q110.xls.oneFit.bmp The fitted beam size is 1.51188 (mm) The fitted data width is 4.03803 cx

Example of Transverse Profile

Beam profile monitor

- Two non-invasive beam profile measurement methods were developed for the CADS Injector I Proton Linac. IPM and electron scanner.
- IPM detect the ionized products from a collision of the beam particle with residual gas atoms or molecules present in the vacuum pipe

non-invasive beam profile (IPM)

Parameter	Value	A Stopping power of proton in H ₂ Bestored Nackar Tote
electric field intensity(V/m)	1e5	
Distance of two big plate (cm)	8	
Size of MCP (mm)	Φ75	(5-3 0.0) 0.1 1 10 100 1000 Energy/Melv) ATT
Size of EGA (mm)	Φ 70	
Detectors	Screen	
Work mode	Ions	
magnetic field	0	

non-invasive beam profile (IPM)

non-invasive beam profile (electron scan)

- Using a low energy electron beam instead of a metal wire to sweep through the beam. The deflection of electron beam by the collective field of the high intensity beam is measured
- Gun- A Kimball Physics electron gun, model EMG-4212, 20kV, 10uA
- Commissioning in next month

calculated deflection as a function of the probe electron energy, linear density of proton , distance between the detector and the centre of the proton beam

non-invasive beam profile (electron scan)

- Electron gun was test in the stand
- Different beam spot on the screen

Beam loss monitor

- The purpose of the beam loss monitor is to avoid the accelerator damage and excessive machine activation by beam loss.
- Ionization chambers will be the main beam loss detector. But at low energies(<10MeV), ionization chambers are not effective to detect beam loss due to the shielding.
- The differential current measurement between two beam position monitor will be the primary input to the fast machine interlock system.

Beam loss monitor

 For the high energy, plastic scintillator + PMT will be the fast beam loss monitor for machine protection

The commissioning of RFQ

- The beam parameters measurement
 - The transmission of RFQ
 - The energy of RFQ
 - The beam emittance
 - The duty factor of RFQ

THPF057

BEAM COMMISSIONING OF C-ADS INJECTOR-I RFQ ACCELERATOR

ADS injector I RFQ commissioning setup

The transmission of RFQ

- 70% duty factor, 95% beam transmission efficiency
- 90% duty factor,11 mA,31 kW proton beam with 90% beam transmission efficiency

The energy of RFQ

- Two FCTs for beam energy measurement
 - Carefully alignment
 - Using scope measuring the phase between two FCTs signals
 - -T=nT0+t
 - Beam energy 3.199MeV

The beam emittance of RFQ

• Using the double slits emittance measurement

The beam emittance of RFQ

The primary commissioning of TCM

• TCM(Test Cryomodule) including 2 spoke cavities, 2 SCQ magnets and 2 cold BPMs.

The primary commissioning of TCM

	SRF1 (status/ Ecc)	SRF1 (status/ Ecc)	beam energy of MEBT1	Beam energy after TCM	Beam energy from SRF1	Beam energy from SRF1	Total energy
	MV/m		MeV				
Detuning	off/0	off/0	3.19	3.12			
Tuning	off/0	on/0	3.19	3.04			
	on/3.51	off/0		3.23	0.19		0.19
	on/3.51	on/5.06		3.59	0.19	0.36	0.55

THPF055

STATUS OF THE SUPERCONDUCTING CAVITY DEVELOPMENT AT IHEP FOR THE CADS LINAC

Conclusion

- The beam instrumentation system works well and the characteristic of beam is measured.
- The RFQ and test cryomodule (TCM) tuning are finished.
- To establish more stable and safety operation, more improvement should be done to the interlock system.
- To measure the longitudinal bunch profile in high power beam and tune the longitudinal matching, some longitudinal diagnostic should be developed such as non-intercepting bunch shape monitor based on the IPM principle and so on.

Acknowledgement

- Thank accelerator physicists for their advice and discussion
- Thank all members of CADS accelerator team for injector I commissioning
- Thanks are also given to the members who give help on system design and manufacture
- Thanks also give people who shares pictures of this talk.

Thank you

中國科學院為能物現為第例 Institute of High Energy Physics Chinese Academy of Sciences