Future Circular Colliders

Yifang Wang Institute of High Energy Physics, Beijing IPAC'2015, May 8, 2015

Outline

- Ideas
- Strategies
- Science & Machine Requirements
- Machine Design & Status
- Summary

Development of Ideas

Initial ideas of e⁺e⁻ circular Higgs factories:

- **LEP3**
- TLEP
- Super-TRISTAN
- Fermilab Site-Filler
- CHF: pp is added
 - Circular Higgs factory+ pp collider
- FCC: European strategy

 FCC-hh, FCC-ee,
 FCC-eh, ...

CERN-OPEN-2011-047 20 January 2012 Version 2.9 arXiv:1112.2518v1 [hep-ex]

A High Luminosity e⁺e⁻ Collider in the LHC tunnel to study the Higgs Boson

Alain Blondel¹, Frank Zimmermann² ¹DPNC, University of Geneva, Switzerland; ²CERN, Geneva, Switzerland

> FERMILAB-CONF-13-037-APC IHEP-AC-2013-001 SLAC-PUB-15370 CERN-ATS-2013-032 arXiv:1302.3318 [physics.acc-ph]

Report of the ICFA Beam Dynamics Workshop

"Accelerators for a Higgs Factory: Linear vs. Circular"

(HF2012)

Alain Blondel¹, Alex Chao², Weiren Chou³, Jie Gao⁴, Daniel Schulte⁵ and Kaoru Yokoya⁶

http://www-bd.fnal.gov/icfabd/HF2012.pdf

Two Major Efforts Developed

IHEP, 50-100 km

CERN, 80-100 km

Strategy of CEPC+SppC

- Start from an e⁺e⁻ Higgs factory(CEPC), with minimum efforts to run at Z pole(single ring machine). No 350 GeV for htt.
- A continuation of BEPC → BEPCII → CEPC, fit the strategic needs, past experience and available resources
- After the e⁺e⁻ phase, build the pp collider(SppC) in the same tunnel
- Gain sufficient time for magnet R&D and wait for tech. improvement

Timeline (dream)

• CPEC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-15
 - Pre-CDR for R&D funding request
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021-2027
- Data taking: 2028-2035

• SppC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
- Construction: 2035-2042
- Data taking: 2042 -

Strategy of FCC

• European Strategy for Particle Physics 2013:

"...to propose an ambitious post-LHC accelerator project...., CERN should undertake design studies for accelerator projects in a global context,...with emphasis on proton-proton and electron-positron highenergy frontier machines....."

Goal: Conceptual Design Report by end of 2018 in time for next European Strategy Update

Scope: Accelerator & Infrastructure

FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs FCC-ee: e⁺e⁻ collider, potential intermediate step FCC-he: integration aspects of pe collisions

R&D Programs

Push key technologies
in dedicated R&D programmes e.g.
16 Tesla magnets for 100 TeV pp in 100 km
SRF technologies and RF power sources

Tunnel infrastructure in Geneva area, linked to CERN accelerator complex **Site-specific**, requested by European strategy

CERN Circular Colliders + FCC

- Why we need it ?
- After the Higgs, game is over ?
- Is ILC enough ?
- Shall we wait for results from LHC, and ILC?
- What can be done exactly at these machines ?
- What energy and luminosity ?

We need to answer these questions based on Science

Reference: FCC-ee: "First Look at the Physics Case of TLEP", JHEP 1401 (2014) 164 CEPC/SppC pre-CDR: <u>http://ihep.ac.cn/preCDR/volume.html</u> Many talks at various conferences, workshops IHEP-CEPC-DR-2015-01 IHEP-EP-2015-01 IHEP-TH-2015-01

IHEP-CEPC-DR-2015-01

IHEP-AC-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

Revisions after international reviews Can be downloaded from http://cepc.ihep.ac.cn/preCDR/volume.html

The CEPC-SPPC Study Group

The CEPC-SPPC Study Group

March 2015

March 2015

0, 2015

New Tasks after the Higgs Discovery

Open questions about Higgs

- Consistent with SM ?
- Composite or elementary ?
- Other Higgs ?
- New properties ?
- Responsible for CP violation?
- What type of potential ?

Never seen point-like scalars !

- New type of interactions concerning only the Higgs:
 - Yukawa coupling through Higgs with spin 0:
 - $-h\tau\tau$, hbb, htt coupling constant, ~10% after LHC
 - Self-coupling h³ & h⁴:
 - ~ 50% after LHC

Need a factor of ~10 improvement over LHC !

Standard Model is not complete

- From neutrinos to top quark, masses differs by a factor 10¹³, why ?
- Fine tuning of Higgs mass(naturalness):

$$m_H^2 - m_{H,0}^2 \sim -\frac{3}{8\pi^2} y_t^2 \Lambda^2$$

A coincidence of 10⁻³⁴? Never before even at 10⁻⁴

For Λ (new physics) at the Planck scale ~ 10¹⁶ TeV:

m_H² = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)² ! ?

- Masses of Higgs and top quark are in the meta-stable region, why ?
 Fundamental reason ?
- Many of the free parameters in the SM are related to Higgs. Coincidence ?

Fundamental reason(s) beyond SM ?!

Evidence Beyond the Standard Model

• Unification at a high energy ?

- No dark matter particles in the SM, Needed ? Where ?
- No CP in the SM to explain Matter-antimatter asymmetry, why ?
- How to describe neutrinos in the SM ?
- SUSY can provide solutions to many of these problems, incident ?

Specific Science Cases

- Electron-positron collider(90, 250, 350 GeV)
 - Higgs Factory: Precision study of Higgs(m_H, J^{PC}, couplings)
 - Similar & complementary to ILC
 - Z & W factory: precision test of SM
 - Deviation from SM ? Rare decays ?
 - Flavor factory: b, c, τ and QCD studies
- Proton-proton collider(~100 TeV)
 - Directly search for new physics beyond SM
 - Precision test of SM
 - e.g., h³ & h⁴ couplings

Precision measurement + searches: Complementary with each other !

X. Powerful + Complementary probes of Higgs Couplings

 $\left[\bigwedge^{2} Z_{6} \right] = \left[2 \frac{1}{2} \frac{$ (HDh), HWBh, HDh FEF 1. TeraZ A probed to (multi-) TeV scale

September 12, 2014

- Every body agrees that a new machine may find solutions to these fundamental questions
- But many still feel uncomfortable. They will ask: Is it guaranteed ?

New Physics for sure ?

Three pillars of future circular colliders EW phase transition Dark Matter Naturalness

$$m_{H}^{2} - m_{H,0}^{2} \sim -\frac{3}{8\pi^{2}}y_{t}^{2}\Lambda^{2}$$

For Λ (new physics) at the Planck scale ~ 10¹⁶ TeV:

- m_H² = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)² ! ?
- If no new physics at LHC
 - − Λ ~ 1 TeV → 10⁻² fine tuning
- If no new physics at 100 TeV
 - − Λ ~ 10 TeV → 10⁻⁴ fine tuning
 - Never before

New Physics + New Particles

New Physics = New Thenomena

Design Goal of CEPC/FCC-ee

- Limit SR power to 50 MW per beam
- CEPC: single ring, head-on collision, up to 250 GeV
- FCC-ee: double ring, large crossing angle, up to 350 GeV

Precision Higgs Physics by CEPC/FCC-ee

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$
 $\delta \sim c_i \frac{v^2}{M^2}$

% precision → M ~ 1 TeV CEPC/FCC-ee to new physics → ~ × 10 over LHC

CEPC preCDR Volume 1 (p.9)

Search for Deviations from SM

Experiment	$\kappa_Z~(68\%)$	f (GeV)	$\kappa_g \ (68\%)$	$m_{\tilde{t}_L}$ (GeV)
HL-LHC	3%	1.0 TeV	4%	430 GeV
ILC500	0.3%	3.1 TeV	1.6%	690 GeV
ILC500-up	0.2%	3.9 TeV	0.9%	910 GeV
CEPC	0.2%	3.9 TeV	0.9%	910 GeV
TLEP	0.1%	5.5 TeV	0.6%	1.1 GeV
Experiment	S (68%)	f (GeV)	T (68%)	$m_{\tilde{t}_L}~({\rm GeV})$
ILC	0.012	1.1 TeV	0.015	890 GeV
CEPC (opt.)	0.02	880 GeV	0.016	870 GeV
CEPC (imp.)) 0.014	1.0 TeV	0.011	1.1 GeV
TLEP-Z	0.013	1.1 TeV	0.012	1.0 TeV
TLEP-t	0.009	1.3 TeV	0.006	1.5 TeV

CEPC preCDR Volume 1 (p.10)

Higgs Self-Couplings & EWSB

- Critical for the EWSB \rightarrow 1st or 2nd order
- O(1) deviations if 1st order

- Can be directly measured at pp, LHC & SPPC/FCC-hh
- Indirectly(model dependent) at e+e- through 1-loop process of hZZ [M. McCullough, PRD 90(2014)015001]

Design Goal of SPPC/FCC-pp

- Technology to bend the proton beam is limited by the field strength of the dipole magnet. Currently we can only imagine up to 20 T.
- Hence, ~ 100 km ring and ~ 100 TeV is a generic desire
- What luminosity ?

Luminosity Scaling Law ?

- Discovery potential follows L \propto s [B. Richter, arXiv:1409.1196] - $L_{100} > (100/14)^2 L_{LHC}$?
- Discovery potential dominated by the beam energy: [I. Hinchliffe, A. Kotwal, M. Mangano, C. Quigg and L.T. Wang, arXiv:1504.06108]

- An integrated Luminosity of 10-20 ab⁻¹ per experiment, corresponding to 2*10³⁵ cm⁻²s⁻¹ well match to our current perspective.
- Even 10³² cm⁻²s⁻¹ could be acceptable as a compromise

Dark Matter Searches

- Great improvement over LHC
- ~ TeV region is much more interesting and most probable for simplest possibilities

M. Low et al., JHEP1408(2014)161

S. Gori et al., JHEP1412(2014)108

Shall We Wait for Results from LHC ?

- If LHC finds nothing, we should go to higher energies
 - An e+e- Higgs factory can give us a first indication
 - go directly to 100 TeV pp collider is also a viable option
- If LHC finds something, it is a new era
 - Beyond SM → new energy scale, new spectrum, LHC can not complete it
 - A higher energy pp collider is needed immediately
 - To access the spectra of higher masses
 - To have more statistics since Event No. $\propto {\rm E^{\sim 5}}_{\rm CM}$
 - An e+e- Higgs factory can give us time to develop technologies for 16-20 T magnet and SC cables

Is ILC enough ?

- Why two e+e- colliders ? One is enough ?
 - Two very different technology. Very different possibility for future.
 - Cross check: 2 accelerators + 2 detectors are better than 1 (ILC) + 2 detectors
- Energy:
 - CEPC for Z and Higgs(up to 250 GeV)
 - ILC can go to 500 GeV for all couplings(Htt etc)
- Polarization:
 - CEPC/FCC-ee: partial transverse polarization for energy measurement
 - ILC: both longitudinal & transverse polarization for physics
- Detector:
 - ILC & CEPC/FCC-ee: cross check
 - ILC can give up Push-Pull option
- Technology:
 - − ILC can go to higher energy → Application: FEL
 - CEPC can go to higher Luminosity
 Application: synchrotron
- Timeline:
 - ILC starts from 2020 ?
 - CEPC/FCC-ee starts from 2022/2025 ?

Machine Design: CEPC/SppC

CEPC Accelerator Design

Compatibility: a main Issue

CEPC & SppC Injectors > Beam pipe detour for detectors CEPC booster avoid storage ring CEPC avoid SPPC detectors SPPC avoid CEPC detectors SR beamlines Predict what SPPC needs Collimators Straight sections Tunnel dimensions Access tunnel > To be fully understood in the next 5 years

Main info of CEPC

- Critical parameters:
 - SR power: 51.7 MW/beam
 - 8*arcs, 2*IPs
 - 8 RF cavity sections (distributed)
 - RF Frequency: 650 MHz
 - Filling factor of the ring: ~70%

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	Circumference [C]	m	54752
Number of IP[N _{IP}]		2	SR loss/turn [U ₀]	GeV	3.11
Bunch number/beam[n _B]		50	Energy acceptance RF [h]	%	5.99
SR power/beam [P]	MW	51.7	Beam current [I]	mA	16.6
emittance (x/y)	nm	6.12/0.018	β _{IP} (x/y)	mm	800/1.2
Transverse size (x/y)	μm	69.97/0.15	Luminosity /IP[L]	cm⁻²s⁻¹	2.04E+34

Challenges

- Beam physics: dynamic aperture, momentum acceptance, electron cloud, pretzel scheme, ...
- Superconducting cavity: HOM dumping, mass production, power consumption,...
- Total power consumption: ~ 500 MW ! → need a green machine
 - Reuse the thermal power, ~ 200 MW
 - Heating of houses → close to a big city, summer ?
 - Gasifying liquified natural gas → close to a harbour
 - Argricultural greenhouse → summer ?
 - Increase the efficiency of the RF power supply to more than 70%, even 80%
 - Partial double-ring machine to increase the luminosity, reduce the power consumption and cost ?

Partial Double-Ring Machine ?

- ~ 10% double-ring
- Large crossing angle & Crab waist & small β_v
- O(1000) bunches
- Luminosity close to double-ring machine ?
- Issues
 - Electrostatic separators
 - RF systems
 - Electron Cloud
 Issues

M. Koratzinos, talk given at HF2014, Beijing M. Koratzinos & F. Zimmermann, this Conf. J. Gao, IHEP-AC-LC-Note2013-012

Conceptual design of SppC

- 8 arcs (5.9 km) and long straight sections (850m*4+1038.4m*4)
- 2 IPs for pp
- 2 IRs for collimation
- 2 IRs for RF and beam abort

SR heat load @arc dipole (per aperture)

34

W/m

56.9

		LSS5 (IP3-ee)
Parameter	Value	Unit
Circumference	54.36	km
Beam energy	35.3	TeV
Dipole field	20	Т
Injection energy	2.1	TeV
Peak luminosity per IP	1.2E+35	cm ⁻² s ⁻¹
Beta function at collision	0.75	m
Circulating beam current	1.0	А
Max beam-beam tune shift per IP	0.006	
Bunch separation	25	ns

Challenges

- High field magnets: both dipoles (20 T) and quadrupoles (pole tip field: 14-20 T).
- Beam screen and vacuum: very high synchrotron radiation power inside the cold vacuum:
- Collimation system: high efficiency collimators in cold sections: new method and structure ?

A R&D plan is developed. Main focus is the magnet

A Conceptual design of 20-T Nb₃Sn + HTS common coil dipole magnet from³ [HEP

Future of HTS Superconducting cables

- Cost per meter decreased by ~ 2.5 times per 10 years
- Current limit per unit area increased by ~3 times per 10 years
- Unit price per (A•meter) can improve by ~50 times over 20 years, if past data can be used for prediction !
- 20T Full HTS magnet ???

PLEASE KEEP OPTIMISTIC !!!
Civil Construction

- A floor plan exists for surface and underground facilities
- Geological survey and preliminary site selection done
- A pre-conceptual design with utilities, power consumption and cost estimate is completed

Surface and Underground Construction

Machine Design: FCC-ee & FCC-hh

M. Benedikt et al, "Combined operation and staging for the FCC-ee collider", "FCC-hh Hadron collider-parameter Scenarios and staging options", this conf.

Key Parameters FCC-ee

Parameter	FCC-ee			LEP2
Energy/beam [GeV]	45	120	175	105
Bunches/beam	13000- 60000	500- 1400	51- 98	4
Beam current [mA]	1450	30	6.6	3
Luminosity/IPx10 ³⁴ cm ⁻² s ⁻¹	21 - 280	5 - 11	1.5 - 2.6	0.0012
Energy loss/turn [GeV]	0.03	1.67	7.55	3.34
Synchrotron Power [MW]	100		22	
RF Voltage [GV]	0.2-2.5	3.6-5.5	11	3.5

Dependency: crab-waist vs. baseline optics and 2 vs. 4 IPs

c.m. energy IGe

FCC-hh Luminosity Goals

- Two parameter sets for two operation phases:
 - phase 1 (baseline): 5 x 10³⁴ cm⁻²s⁻¹ (peak), 250 fb⁻¹/year (averaged)
 - phase 2 (ultimate): ~2.5 x 10³⁵ cm⁻²s⁻¹ (peak), 1000 fb⁻¹/year (averaged)

M. Benedikt

Key Parameters of FCC-hh

Parameter	FCC-hh	LHC
Energy [TeV]	100 c.m.	14 c.m.
Dipole field [T]	16	8.33
# IP	2 main, +2	4
Luminosity/IP _{main} [cm ⁻² s ⁻¹]	5 - 25 x 10 ³⁴	1 x 10 ³⁴
Stored energy/beam [GJ]	8.4	0.39
Synchrotron rad. [W/m/aperture]	28.4	0.17
Bunch spacing [ns]	25 (5)	25

Key Technology R&D - HFM

- Increase critical current density
- Obtain high quantities at required quality
- Material Processing
- Reduce cost

Magnet Design

- Develop 16T short models
- Field quality and aperture
- Optimum coil geometry
- Manufacturing aspects
- Cost optimisation
- First demonstrator in 2016?

Key Technology R&D - RF

- Cavity R&D for large Q₀, high gradient, acceptable cryo power
- Multilayer additive manufacturing combining Cu and LTS materials
- High quality over large surfaces

- Push Klystrons far beyond 70% efficiency
- Increase power range of solid-state amplifiers
- High reliability for high multiplicity

Geology Studies – Example 93 km

Alignment Shaft Tools	Alignment Location	Geology Intersected by Shafts Shaft Depths
Choose alignment option	+	Shaft Depth (m) Geology (m)
93km quasi-circular 🔹		Point Actual Min Mean Max Qusternary Molasse Urgonian Calcaire
Tunnel depth at centre: 299mASL	Contraction of the second s	A 203 200 204 212 93 111 0 0
		B 227 219 226 231 41 185 0 0
Gradient Parameters		C 218 208 217 225 75 143 0 0
Azimuth (*): -15		D 153 150 154 158 19 134 0 0
Slope Angle x-x(%): .5		E 247 233 249 261 24 223 0 0
Slope Angle y-y(%): 0		F 262 251 269 304 32 230 0 0
		G 396 392 393 396 177 220 0 0
CALCULATE		H 266 231 274 322 0 325 0 0
Alignment centre		I 146 141 144 149 26 120 0 0
X: 2499812 Y: 1106889		J 248 247 251 258 6 242 0 0
C Intersection CP 1 CP 2		K 163 153 159 164 76 87 0 0
Angle	u G	L 182 182 184 187 17 165 0 0
Depth 589m 589m		Total 2711 2607 2724 2867 585 2185 0 0

 90 – 100 km fits geological situation well, better than a smaller ring size

LHC suitable as potential injector

FCC-hh arcs Single tunnel, longitudinal ventilation

Opt. 1: Øint: 6.0 m

P. Lebrun

Current Status

CEPC-SppC

- Pre-CDR completed after the international review
- R&D issues identified
- A proposal for R&D submitted
- Seed money from IHEP for R&D available
- International advisory committee to be established soon
- A model of international collaboration to be invented

FCC

- Organization established with international participation: 51 institutes and 19 countries
- Funding from CERN is available
- Annual meetings all over the world with very enthusiastic participations
- A lot of technical advances, CDR by 2018

Summary

- Tremendous efforts up to now
- Real progress in all fronts
- A promising future: please be optimistic !
- Let's work together to make it happen

Thanks to N. Arkani-Hamed, M. Benedikt, Jie Gao, Xinchou Lou, M. Mangano, Qin Qing, Liantao Wang, and many other who provided materials for this talk.

Thanks to a lot of people all over the world who did extraordinary works for this study

Thanks 谢谢