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Muon Accelerators for HEP 
• m – an elementary charged lepton: 

– 200 times heavier than the electron 

– 2.2 ms lifetime at rest 
 

• Physics potential for the HEP community using muon beams 
– Tests of Lepton Flavor Violation 

– Anomalous magnetic moment a hints of new physics (g-2) 

 

– Can provide equal fractions of electron  
and muon neutrinos at high intensity for  
studies of neutrino oscillations –  
the Neutrino Factory concept 

 

– Offers a large coupling to the “Higgs mechanism” 

  

– As with an e+e− collider, a m+m− collider would offer a precision leptonic 
probe of fundamental interactions 

 
May 8, 2015 IPAC15 2 

m+ ® e+nenm

m- ® e-nenm



Outline 
• The U.S. Muon Accelerator Program 

 

• Why Neutrino Factories? 
– Neutrino Factory Concepts 

• Short baseline a nSTORM 

• Long Baseline a IDS-NF and NuMAX 

 

• Going Beyond a Neutrino Factory Facility 
– Possibilities for a future Muon Collider Capability 

– Higgs Factory to >5 TeV 

 

• Key Accomplishments of the  MAP R&D Effort 
 

• Conclusion 
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Will show highlights from 

~50 MAP-related 

contributions to this 

conference 



The U.S. Muon Accelerator Program I 

• The US Muon Accelerator Program was approved by DOE-OHEP in 

in 2011, in response to the 2008 P5 Panel Report Recommendation: 

– The panel also recommends R&D for alternative accelerator technologies, to 

permit an informed choice when the lepton collider energy is established. 

• That report specifically noted: 

– Finally, a muon collider may be an effective means to reach multi-TeV energies... 

Recent studies using a jet of mercury in a strong magnetic field have 

demonstrated that such a target is capable of surviving a four-megawatt proton 

beam. This first step toward providing muons is very encouraging. The next step is 

the demonstration of cooling using a combination of ionization energy loss and 

dispersion in a low-energy, low-frequency acceleration system. Support for R&D 

for this program has been very limited.  Demonstrating its feasibility or 

understanding its limitations will require a higher level of support. 

• In 2012, DOE-OHEP requested development of a detailed plan for a 

~6-year program to establish muon accelerator feasibility 

– A detailed Feasibility Assessment Execution Plan was delivered to DOE-OHEP 

and endorsed by an OHEP-convened review panel in February 2014. 
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The U.S. Muon Accelerator Program II 

May 8, 2015 IPAC15 5 

B
u
n
ch
e
r	

P
h
as
e
	R
o
ta
to
r	

In
i
al
	C
o
o
lin
g	

C
ap
tu
re
	S
o
l.	

			Proton	Driver	 Front	End	

M
W
-C
la
ss
	T
ar
ge
t	

			Accelera on	

D
e
ca
y	
C
h
an
n
e
l	

			µ Storage	Ring	

ν

	281m	

Accelerators:	
Single-Pass	Linacs		
	

0.2–1	
GeV	

1–5	
GeV	

5	GeV	

			Proton	Driver	 			Accelera on	 			Collider	Ring	

Accelerators:					
Linacs,	RLA	or	FFAG,	RCS	

			Cooling	

µ+ 

6
D
	C
o
o
lin
g	

6
D
	C
o
o
lin
g	

Fi
n
al
	C
o
o
lin
g	

B
u
n
ch
	

M
er
ge
	

µ− 

µ+ µ− 

Share same complex 

n Factory Goal:  
1021 m+ & m- per year  
within the accelerator  

acceptance 

Neutrino	Factory	(NuMAX)	

Muon	Collider	

m-Collider Goals:  
126 GeV   

~14,000 Higgs/yr 

Multi-TeV    
Lumi > 1034cm-2s-1 

ECoM:	
	

Higgs	Factory	
to	

~10	TeV	

			Cool-	
ing	

In
i
al
	C
o
o
lin
g	

C
h
ar
ge
	S
ep

ar
at
o
r	

ν
µ+ 

µ− 

B
u
n
ch
er
	

P
h
as
e
	R
o
ta
to
r	

C
ap
tu
re
	S
o
l.	

M
W
-C
la
ss
	T
ar
ge
t	

D
ec
ay
	C
h
an
n
el
	

Front	End	

SC
	L
in
ac
	

SC
	L
in
ac
	

A
cc
u
m
u
la
to
r	

B
u
n
ch
e
r	

A
cc
u
m
u
la
to
r	

B
u
n
ch
er
	

C
o
m
b
in
er
	

Long Baseline NF 

The program also targeted a short-baseline NF design for 

precision studies of sn and the short baseline n anomalies   



WHY NEUTRINO FACTORIES? 

May 8, 2015 IPAC15 6 



The Critical Issues 
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• What must we understand in the neutrino sector? 
– dCP:  Can this be done with the same  

precision as the quark sector???  

– The mass hierarchy 

– The value of q23-p/4: +, - or zero? 

– Resolve the LSND and other short  

baseline experimental anomalies   

– And enable the search for new  

physics 

GLoBES Comparison of Potential  

Performance of the Various  

Advanced Concepts (courtesy P. Huber) 

Impact of precision short-

baseline NF capabilities 

Impact of precision long-

baseline NF capabilities 



Microscopes for the n Sector 
• Superbeam technology will continue to drive initial 

observations in the coming years 

 

• However, anomalies and new discoveries will drive our 
need for precision studies to develop a complete physical 
understanding 

 

• Neutrino Factory capabilities (both long- and short-
baseline) offer the route to controlled systematics and 
precision measurements, which are required to fully 
elucidate the relevant physics processes 
 

a Precision Microscopes for the n sector 
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Neutrino Factory Development Under MAP 

• Short Baseline NF 
– nuSTORM 

• Definitive measurement of sterile neutrinos 

• Precision ne cross-section measurements (systematics issue for long baseline 
SuperBeam experiments) 

• Would serve as an HEP muon accelerator proving ground… 

 

• Long Baseline NF with a Magnetized Detector 
– IDS-NF (International Design Study for a Neutrino Factory) 

• 10 GeV muon storage ring optimized for 1500-2500km baselines 

• “Generic” design (ie, not site-specific) 
 

– NuMAX  (Neutrinos from a Muon Accelerator CompleX) 
• Site-specific:  FNAL a SURF  (1300km baseline) 

• 4-6 GeV beam energy optimized for CP studies  
– Flexibility to allow for other operating energies 

• Can provide an ongoing short baseline measurement option 

• Detector options 
– Magnetized LAr is the goal 

– Magnetized iron provides equivalent CP sensitivities using ~3x the mass 
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nSTORM – the First NF? 

m decay ring: P = 3.8 GeV/c ± 10% 

10 

Near Hall 

Far Hall @1.9km 

Far Detector 

To Far 

Hall 

May 8, 2015 IPAC15 

No new technologies 

required! 

Could be deployed now! 



n Beams at nuSTORM 
• n beams from p+ decay at 

nuSTORM 

– a: at 50 m from end of 

production straight 

– b: at 2000 m  

• Flavor pure with flux 

known to <1% 

 

• n beams from m decay at 

nuSTORM 

– a: at 50 m from end of 

production straight 

– b: at 2000 m  

• Absolute flavor purity with 

flux known to <1% 
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p+   m+ + nm,    p decays in injection straight 

m+ 


  e+ + ne + nm-bar,    decays from stored muons  



nuSTORM and dcp Coverage @ DUNE 

• 75% coverage of dcp in a LBL  
n oscillation experiment (P5 
requirement) in a reasonable 
exposure time 
 
a Systematic uncertainties 
at the 1% level are required.   

 

• Degradation of systematic 
uncertainties to the ~5% level  
 
a exposure increase of 200-
300% (very non-linear). 

 

• We have yet to achieve 2% 
uncertainty in n experiments. 
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nStorm as an R&D platform 
• A high-intensity pulsed muon source  

• 100<pμ<300 MeV/c muons 
– Using extracted beam from ring 

– 1010 muons  per 1 μsec pulse 

 

• Beam available simultaneously with 
physics operation 

 

• nSTORM also provides the 
opportunity to design, build and test 
decay ring instrumentation (BCT, 
momentum spectrometer, polarimeter) 
to measure and characterize the 
circulating muon beam 
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The Long Baseline Neutrino Factory 

• IDS-NF:  the ideal NF 

– Supported by MAP 

• MASS working group:   

A staged approach - 

NuMAX@5 GeVaSURF 
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• IDS$NF'baseline:'
– Intermediate'baseline'detector:'
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• Width'2m;'3mm'slots'between'plates'

MagneHzed'Iron'Neutrino'Detector'(MIND):'

14mx14mx3cm plates

1.2—2.2 T 

100 kA/turn

Small field gaps 

and jumps

Bross,'Soler'



The MAP Muon Accelerator Staging Study 

a NuMAX  
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NuMAX Staging: 
• Commissioning  

 1MW Target 

 No Muon Cooling 

 10kT Detector 

• NuMAX+ 

 2.75 MW Target 

 6D Muon Cooling 

 34kT Detector 

5 GeV Storage Ring 

optimized for 

Fermilab-to-SURF 

baseline 



Unit nuSTORM NuMAX 
Commissioning

NuMAX NuMAX+

- 3 1017 4.9 1019 1.8 1020 5.0 1020

- 8 1017 1.25 1020 4.65 1020 1.3 1021

Type SuperBIND
MIND /      

Mag LAr
MIND /      

Mag LAr
MIND /      

Mag LAr
km 1.9 1300 1300 1300
kT 1.3 100 / 30 100 / 30 100 / 30
T 2 0.5-2 0.5-2 0.5-2

Type SuperBIND Suite Suite Suite
m 50 100 100 100
kT 0.1 1 1 2.7
T Yes Yes Yes Yes

GeV/c 3.8 5 5 5

m 480 737 737 737

- No No 6D Initial 6D Initial
MW 0.2 1 1 2.75

Accelerator:

Ionization Cooling

Mass
Magnetic Field

Ring Momentum (Pµ)

Circumference (C)

Proton Beam Power

Distance from Ring
Mass

Magnetic Field

Near Detector:
Distance from Ring

Neutrino Factory Parameters

Parameters

e or µ to detectors/year
Stored µ+ or µ-/year

Far Detector:

MASS NF Parameters 
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SURF 
       Superbeam 

 
ft ft 

Muon Beam 
R&D Facility 

Possible to deploy subsequent 

muon collider capabilities  

1 GeV Muon  

Linac (325MHz) 

To  
SURF 

0.8 GeV Proton  

Linac (PIP-II) 

3-7 GeV Proton & 

1-5 GeV Muon 

Dual Species Linac 

0.8-3 GeV Proton  

Linac (PIP-III) 

To Near Detector(s) for 
            Short Baseline 
                      Studies  

Possibilities for NF Capabilities 

at Fermilab:  

nSTORM  NuMAX 

Remains fully 

compatible with 

the PIP-II a III 

staging option 
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GOING BEYOND NEUTRINO 

FACTORY CAPABILITIES 
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Features of the Muon Collider 

• Superb Energy Resolution 
– SM Thresholds and s-channel Higgs Factory operation 

 

• Multi-TeV Capability (≤ 10TeV): 
– Compact & energy efficient machine 

– Luminosity > 1034 cm-2 s-1 

– Option for 2 detectors in the ring 
 

• For √s > 1 TeV:  Fusion processes dominate  
a an Electroweak Boson Collider 

a a discovery machine complementary to a  

    very high energy pp collider 

– >5TeV:  Higgs self-coupling resolution <10% 
 

What is our most efficient accelerator option if  

new LHC data shows evidence for a multi-TeV particle spectrum? 
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Muon Colliders – Efficiency at the multi-TeV scale 
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Efficiency of multi-

pass acceleration 



Parameter Units
CoM	Energy TeV

Avg.	Luminosity 1034cm-2s-1

Beam	Energy	Spread %

Higgs	Production/107sec
Circumference km

No.	of	IPs
Repetition	Rate Hz

b* cm

No.	muons/bunch 1012

Muon	Collider	Parameters
Higgs

Production	
Operation

0.126

0.008
0.004

13,500
0.3
1
15
1.7

4

Muon	Collider	Parameters
Higgs

Accounts	for	
Site	Radiation	
Mitigation

1.5 3.0 6.0

1.25 4.4 12
0.1 0.1 0.1

37,500 200,000 820,000
2.5 4.5 6
2 2 2
15 12 6

1	(0.5-2) 0.5	(0.3-3) 0.25

2 2 2

Muon	Collider	Parameters
Multi-TeV

Norm.	Trans.	Emittance,	eTN p mm-rad

Norm.	Long.	Emittance,	eLN p mm-rad

Bunch	Length,	ss cm

0.2

1.5

6.3

0.025 0.025 0.025

70 70 70

1 0.5 0.2

Proton	Driver	Power MW 4 4 4 1.6
Wall	Plug	Power MW 200 216 230 270

Muon Collider Parameters 
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Success of advanced cooling  

concepts a several × 1032 
Exquisite Energy Resolution  

Allows Direct Measurement  

of Higgs Width 



THE MAP R&D EFFORT 
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Accelerator R&D Effort (U.S. MAP) 
Design Studies 

– Proton Driver 

– Front End 

– Cooling 

– Acceleration and Storage 

– Collider 

– Machine-Detector Interface 

– Work closely with physics 
and detector efforts 

 

Technology R&D 
– RF in magnetic fields 

– SCRF for acceleration 
chain (Nb on Cu 
technology) 

– High field magnets 
• Utilizing HTS technologies 

– Targets & Absorbers 

– MuCool Test Area (MTA) 
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Major System Demonstration  

– The Muon Ionization Cooling Experiment – MICE 

• Major U.S. effort to provide key hardware:  RF Cavities and couplers, 

Spectrometer Solenoids, Coupling Coil(s), Partial Return Yoke 

• Experimental and Operations Support 

 



Target & Front End Progress 
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C Target 

Compact 

Taper Design 

Control of FE Energy Deposition 

FE Energy 

Deposition 

Buncher and Phase  

Rotator Matched to a  

325 MHz Initial Cooling 

Channel 



Muon Ionization Cooling 
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Advanced techniques a  

Improved HF Luminosity  

Simplified Final Cooling requirements 

PIC? 



Muon Ionization Cooling (Design) 

Initial 6D Cooling:  e6D 60 cm3 a ~50 mm3;  Trans = 67% 
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6D Rectilinear Vacuum Cooling Channel (replaces Guggenheim concept):   
Trans = 55%(40%) without(with) bunch recombination 



Muon Ionization Cooling (Design) 

• Helical Cooling Channel (Gas-filled RF Cavities):  eT = 0.6mm, 

eL = 0.3mm  
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Matching 

Late Stage w/ Induction Linac 

• Final Cooling with 25-30T solenoids (emittance exchange): 
eT = 55mm, eL = 75mm  



Muon Ionization Cooling (Design) 
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• MAP Baseline Designs offer 
– Factor >105 in emittance reduction 

• Alternative and Advanced 
Concepts 
– Hybrid Rectilinear Channel  
 (gas-filled structures) 

– Parametric Ionization Cooling 

– Alternative Final Cooling 
a Early stages of existing scheme  
a Round-to-flat Beam Transform  
a Transverse Bunch Slicing  
a Longitudinal Coalescing 
    (at ~10s of GeV) 

 

a Considerable promise to exceed 
our original target parameters 

 



Successful Operation of 
805 MHz “All Seasons” 
Cavity in 5T Magnetic 
Field under Vacuum  

MuCool Test Area/Muons Inc 

World Record HTS-
only Coil 

15T on-axis field (16T on coil) 

R. Gupta 
PBL/BNL 

Demonstration of High 
Pressure RF Cavity in 3T 
Magnetic Field with Beam 

Extrapolates to required   
m-Collider Parameters 

MuCool Test Area 

Breakthrough in HTS 
Cable Performance with 
Cables Matching Strand 

Performance 

FNAL-Tech Div 
T. Shen-Early Career Award 
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Cooling Technology R&D 
>20MV/m operation  

in up to 5 T B-field 

MICE 201 MHz RF Module –  

MTA Acceptance Test in B-field Complete 

11MV/m in Fringe of 5T Lab-G Solenoid 

<4×10-7 Spark Rate (0 observed) 



Cooling Technology R&D 
• Cooling Technology Status 

– Magnets 
• MAP Initial Baseline Selection process has yielded 6D cooling baselines that do not 

require HTS magnets 

• HTS Solenoids may be required as part of a higher performance 6D Cooling Channel and 
for parts of the Final Cooling Channel 

– RF Cavities 
• The successful test in magnetic field of the MICE RF Module Prototype demonstrates 

– The importance of surface preparation 

– The importance of detailed simulation in magnetic field as part of the design process 

• High Pressure Gas-Filled RF Cavities provide a demonstrated route to the required 
gradients with high intensity muon beams 

• Recent results with vacuum RF cavities  
in magnetic field have shown results  
consistent with our physical models 
– 805 MHz “Modular” Cavity:   

A test vehicle to characterize breakdown  
effects in vacuum cavities 

» SCRF-style surface preparation 

» Design optimized for use in magnetic field 

» Data-taking has begun 
 

 

The MAP Feasibility Assessment aimed to provide a full 6D 
cell prototype for testing at high beam intensity in the MTA 
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Demonstration of Muon Ionization 

Cooling (Re-baseline) 

US US 
UK 

UK 

MICE Demonstration @ RAL 
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MICE Step IV: 

Study of Absorber 

Materials 

2015 Data 

US 

US 
US-UK 

2017 Data 



MICE Installation/Commissioning 
Integration 
and 
Preliminary 
Commissioning 
Underway 

 

Formal start  
of Channel 
Commissioning  
in June 
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Technology Challenges - Acceleration 

• Muons require an ultrafast accelerator chain 

 a Beyond the capability of “standard designs” 

• Solutions include:   
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• Superconducting Linacs (NuMAX choice) 

• Recirculating Linear Accelerators (RLAs) 

• Fixed-Field Alternating-Gradient (FFAG) Rings 

• Rapid Cycling Synchrotrons (RCS) 

RCS requires  

2 T p-p magnets  

at f = 400 Hz 

(U Miss & FNAL) 

JEMMRLA Proposal: 

JLAB Electron Model of  

Muon RLA with Multi-pass  

Arcs  



Muon Rings 

• NF:  nuSTORM and NuMAX designs 

• Collider:  Detailed optics studies for Higgs, 1.5 TeV,  

3 TeV and now 6 TeV CoM 

– With supporting magnet designs 

and background studies 

– Detector occupancy similar to  

that seen in the LHC  

Luminoisty Upgrade 
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CONCLUSION 
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Concluding Remarks 
• Neutrino Factory capabilities offer a precision microscope 

that will likely be needed to fully probe the physics of the 
neutrino sector 
 

• A multi-TeV muon collider may be the only cost-effective route 
to lepton collider capabilities at energies > 5 TeV 
 

• For the last 3 years US Muon Accelerator Program has 
pursued options to deploy muon accelerator capabilities  
– Near-term (nSTORM)  

– Mid-term (NuMAX)  

– Long-term: a muon collider capability that would build on the NF complex 

and key technical hurdles have been addressed.   
 

• In light of the 2014 P5 recommendations that this directed 
facility effort no longer fits within the budget-constrained US 
research portfolio, the US effort is entering a ramp-down phase 
 

Nevertheless, muon accelerator capabilities offer unique 
potential for the future of high energy physics research 
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