

RICHMOND VIRGINIA MAY 3-8, 2015 HOSTED BY: THOMAS JEFFERSON

NEWPORT NEWS VIRGINIA, USA

Muon Accelerators: R&D Towards Future Neutrino Factory & Lepton Collider Capabilities Mark Palmer

Director, US Muon Accelerator Program for the MAP Collaboration

May 8, 2015

Muon Accelerators for HEP

- μ an elementary charged lepton:
 - 200 times heavier than the electron
 - 2.2 μ s lifetime at rest
- Physics potential for the HEP community using muon beams
 - Tests of Lepton Flavor Violation
 - Anomalous magnetic moment ⇒ hints of new physics (g-2)
 - Can provide equal fractions of electron and muon neutrinos at high intensity for studies of neutrino oscillations – the Neutrino Factory concept

$$\begin{array}{c} m^{+} \rightarrow e^{+} n_{e} \overline{n}_{m} \\ m^{-} \rightarrow e^{-} \overline{n}_{e} n_{m} \end{array}$$

- Offers a large coupling to the "Higgs mechanism"
- As with an e⁺e⁻ collider, a $\mu^+\mu^-$ collider would offer a precision leptonic probe of fundamental interactions

 $\sim \left(\frac{m_{\mu}^2}{m_{e}^2}\right) \cong 4 \times 10^4$

Outline

- The U.S. Muon Accelerator Program
- Why Neutrino Factories?
 - Neutrino Factory Concepts
 - Short baseline ⇒ vSTORM
 - Long Baseline \Rightarrow IDS-NF and **NuMAX**

- Going Beyond a Neutrino Factory Facility

 Possibilities for a future Muon Collider Capability
 Higgs Factory to >5 TeV
- Key Accomplishments of the MAP R&D Effort
- Conclusion

The U.S. Muon Accelerator Program I

May 8, 2015 **Fermilab**

- The US Muon Accelerator Program was approved by DOE-OHEP in in 2011, in response to the 2008 P5 Panel Report Recommendation:
 - The panel also recommends R&D for alternative accelerator technologies, to permit an informed choice when the lepton collider energy is established.
- That report specifically noted:
 - Finally, a muon collider may be an effective means to reach multi-TeV energies... Recent studies using a jet of mercury in a strong magnetic field have demonstrated that such a target is capable of surviving a four-megawatt proton beam. This first step toward providing muons is very encouraging. <u>The next step is</u> <u>the demonstration of cooling using a combination of ionization energy loss and</u> <u>dispersion in a low-energy, low-frequency acceleration system</u>. Support for R&D for this program has been very limited. Demonstrating its feasibility or understanding its limitations will require a higher level of support.
- In 2012, DOE-OHEP requested development of a detailed plan for a ~6-year program to establish muon accelerator feasibility
 - A detailed Feasibility Assessment Execution Plan was delivered to DOE-OHEP and endorsed by an OHEP-convened review panel in February 2014.

The U.S. Muon Accelerator Program II **Neutrino Factory (NuMAX)** n Factory Goal: Proton Driver Acceleration μ Storage Ring Front End Cool-10²¹ m⁺ & m⁻ per year ing within the accelerator acceptance 5 GeV MW-Class Target Capture Sol. Decay Channel 0.2 - 11 - 5Buncher Phase Rotator Initial Cooling SC Linac Buncher Accumulator GeV GeV m-Collider Goals: 281m 126 GeV ⇒ ~14,000 Higgs/yr Accelerators: **Single-Pass Linacs** Multi-TeV ⇒ Long Baseline NF Lumi > 10³⁴cm⁻²s⁻¹ Share same complex **Muon Collider Proton Driver** Acceleration **Collider Ring** Front End Cooling E_{CoM}: Higgs Factory Charge Separator Phase Rotator nitial Cooling Decay Channel MW-Class Target Capture Sol. Buncher Final Cooling Buncher Accumulator Combiner 6D Cooling 6D Cooling to SC Linac ~10 TeV Merge Bunch \hat{u}^{-} Accelerators: Linacs, RLA or FFAG, RCS

The program also targeted a short-baseline NF design for precision studies of σ_v and the short baseline v anomalies

5 IPAC15

May 8, 2015 🛟 Fermilab

WHY NEUTRINO FACTORIES?

6 IPAC15

The Critical Issues

- What must we understand in the neutrino sector?
 - $-\delta_{CP}$: Can this be done with the same precision as the quark sector???
 - The mass hierarchy

IPAC15

- The value of θ_{23} - $\pi/4$: +, or zero?
- Resolve the LSND and other short baseline experimental anomalies
- <u>And enable the search for new</u> <u>physics</u>

Impact of precision shortbaseline NF capabilities

Impact of precision longbaseline NF capabilities

GLoBES Comparison of Potential Performance of the Various Advanced Concepts *(courtesy P. Huber)*

Microscopes for the ν Sector

- Superbeam technology will continue to drive initial observations in the coming years
- However, anomalies and new discoveries will drive our need for precision studies to develop a complete physical understanding
- Neutrino Factory capabilities (both long- and shortbaseline) offer the route to *controlled systematics* and *precision measurements*, which are required to fully elucidate the relevant physics processes

⇒ Precision Microscopes for the v sector

Neutrino Factory Development Under MAP

May 8, 2015 **Fermilab**

Short Baseline NF

- nuSTORM
 - Definitive measurement of sterile neutrinos
 - Precision $\nu_{\rm e}$ cross-section measurements (systematics issue for long baseline SuperBeam experiments)
 - Would serve as an HEP muon accelerator proving ground...
- Long Baseline NF with a Magnetized Detector
 IDS-NF (International Design Study for a Neutrino Factory)
 - 10 GeV muon storage ring optimized for 1500-2500km baselines
 - "Generic" design (ie, not site-specific)
 - NuMAX (Neutrinos from a Muon Accelerator CompleX)
 - Site-specific: FNAL ⇒ SURF (1300km baseline)
 - 4-6 GeV beam energy optimized for CP studies
 - Flexibility to allow for other operating energies
 - Can provide an ongoing short baseline measurement option
 - Detector options
 - Magnetized LAr is the goal
 - Magnetized iron provides equivalent CP sensitivities using ~3x the mass

vSTORM – the First NF?

v Beams at nuSTORM

And Arogram

- ν beams from π⁺ decay at nuSTORM
 - a: at 50 m from end of production straight
 - b: at 2000 m
- Flavor pure with flux known to <1%
- v beams from μ decay at nuSTORM
 - a: at 50 m from end of production straight
 - b: at 2000 m
- Absolute flavor purity with flux known to <1%

May 8, 2015 🛟 Fermilab

nuSTORM and δ_{cp} Coverage @ DUNE

• 75% coverage of δ_{cp} in a LBL ν oscillation experiment (P5 requirement) in a reasonable exposure time

Systematic uncertainties at the 1% level are required.

 Degradation of systematic uncertainties to the ~5% level

⇒ exposure increase of 200-300% (very non-linear).

 <u>We have yet to achieve 2%</u> <u>uncertainty in v experiments.</u>

$\begin{array}{c} \textbf{CP Violation Sensitivity} \\ \textbf{75\% } \delta_{\textbf{CP}} \textbf{ Coverage} \end{array}$

May 8, 2015 🛟 Fermilab

vStorm as an R&D platform

- A high-intensity pulsed muon source
- 100<p_u<300 MeV/c muons
 - Using extracted beam from ring
 - 10¹⁰ muons per 1 μsec pulse
- Beam available simultaneously with physics operation
- vSTORM also provides the opportunity to design, build and test decay ring instrumentation (BCT, momentum spectrometer, polarimeter) to measure and characterize the circulating muon beam

The Long Baseline Neutrino Factory

	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Distance to long-baseline neutrino detector	1 500–2 500 km

MagneHzed'Iron'Neutrino'Detector'(MIND):

4mx14mx3cm plates

- IDS\$NF'baseline:'
 - Intermediate'baseline'detector:
 - 100'kton'at'2500—5000'km
 - Magic'baseline'detector:"
 - 50'kton'at'7000—8000'km'
 - Appearance'of'"wrong\$sign"'muons'
 - Toroidal'magneHc'field'>'1'T'
 - Excited'with'"superconducHng transmission'line[,]

- SegmentaHon:'3'cm'Fe'+'2'cm' scinHllator
- 50\$100'm'long'
- Octagonal'shape'
- Welded'double\$sheet'
 - Width'2m:'3mm'slots'between'plates

• IDS-NF: the *ideal* NF

• MASS working group:

A staged approach -

NuMAX@5 GeV⇔SURF

Supported by MAP

May 8, 2015 🛟 Fermilab

IPAC15 14

The MAP Muon Accelerator Staging Study ⇒ NuMAX

IPAC15 15

MASS NF Parameters

Neutrino Factory Parameters										
Parameters	Unit	nuSTORM	NuMAX Commissioning	NuMAX	NuMAX+					
v_e or v_μ to detectors/year	-	3×10 ¹⁷	4.9×10 ¹⁹	1.8×10 ²⁰	5.0×10 ²⁰					
Stored µ+ or µ-/year	-	8×10 ¹⁷	1.25×10 ²⁰	4.65×10 ²⁰	1.3×10 ²¹					
Far Detector:	Туре	SuperBIND	MIND / Mag LAr	MIND / Mag LAr	MIND / Mag LAr					
Distance from Ring	km	1.9	1300	1300	1300					
Mass	kT	1.3	100 / 30	100 / 30	100 / 30					
Magnetic Field	Т	2 0.5-2		0.5-2	0.5-2					
Near Detector:	Туре	SuperBIND	Suite	Suite	Suite					
Distance from Ring	m	50	100	100	100					
Mass	kТ	0.1	1	1	2.7					
Magnetic Field	Т	Yes	Yes Yes		Yes					
Accelerator:										
Ring Momentum (P _µ)	GeV/c	3.8	5	5	5					
Circumference (C)	m	480	737	737	737					
Ionization Cooling	-	No	No	6D Initial	6D Initial					
Proton Beam Power	MW	0.2	1	1	2.75					

Possibilities for NF Capabilities at Fermilab: vSTORM → NuMAX

0.8 GeV Proton Linac (PIP-II) Accumulator SURF Superbeam Buncher, Combiner 0.8-3 GeV Proton **Remains fully** Linac (PIP-III) SURF compatible with Final Cool NuMAX: the PIP-II ⇔ III vs to SURF staging option 1 GeV Muon Linac (325MHz) To Near Detector(s) for Short Baseline 3-7 GeV Proton & 1-5 GeV Muon **Studies Dual Species Linac Nuon Beam** R&D Facilit vSTORM Possible to deploy subsequent 1500 ft 1500ft muon collider capabilities 8.2015 Va

GOING BEYOND NEUTRINO FACTORY CAPABILITIES

18 IPAC15

Features of the Muon Collider

Superb Energy Resolution

– SM Thresholds and s-channel Higgs Factory operation

- Multi-TeV Capability (≤ 10TeV):
 - Compact & energy efficient machine
 - Luminosity > 10³⁴ cm⁻² s⁻¹
 - Option for 2 detectors in the ring
- For √s > 1 TeV: Fusion processes dominate
 ⇒ an Electroweak Boson Collider
 ⇒ a discovery machine complementary to a very high energy pp collider
 - >5TeV: Higgs self-coupling resolution <10%</p>

What is our most efficient accelerator option if μ^{\mp} $\bar{\nu}_{\mu}$ new LHC data shows evidence for a multi-TeV particle spectrum?

19 IPAC15

May 8, 2015 **Fermilab**

Muon Colliders – Efficiency at the multi-TeV scale

May 8, 2015 **Fermilab**

20 IPAC15

Muon Collider Parameters

↑ North

21

A CONTRACTOR		Muon Collid	ler Paramete	ers			·ogra
And			<u>Higgs</u>	<u>Multi-T</u>			eV_
Fermilab Site						Accounts for	
			Production				Site Radiation
Paran	Units	Operation				Mitigation	
CoM E	TeV	0.126		1.5	3.0	6.0	
Avg. Lun	10 ³⁴ cm ⁻² s ⁻¹	0.008		1.25	4.4	12	
Beam Ener	%	0.004		0.1	0.1	0.1	
Higgs Produc		13,500	3	7,500	200,000	820,000	
Circumf	km	0.3		2.5	4.5	6	
No. c		1		2	2	2	
Repetiti	Hz	15		15	12	6	
b	cm	1.7	1 (0.	5-2)	0.5 (0.3-3)	0.25	
No. muor	10 ¹²	4		2	2	2	
Norm. Trans.	p mm-rad	0.2		0.025	0.025	0.025	
Norm. Long. E	p mm-rad	1.5		70	70	70	
Bunch Le	cm	6.3		1	0.5	0.2	
Proton Dri	MW	4		4	4	1.6	
Wall Plu	MW	200		216	230	270	
Exquisite Energy Resolution			Success	of ad	vanceo	d cooling	
	Allows Direct Measurement of Higgs Width		concepts ⇔ several ⊭ 10 ³²				
IPAC15			May 8, 2015 FEITOINIA				

THE MAP R&D EFFORT

22 IPAC15

Accelerator R&D Effort (U.S. MAP)

Design Studies

- Proton Driver
- Front End
- Cooling
- Acceleration and Storage
- Collider
- Machine-Detector Interface
- Work closely with physics and detector efforts

- Technology R&D
 - RF in magnetic fields
 - SCRF for acceleration chain (Nb on Cu technology)
 - High field magnets
 - Utilizing HTS technologies
 - Targets & Absorbers
 - MuCool Test Area (MTA)

May 8, 2015 🗲 Fermilat

Major System Demonstration

- The Muon Ionization Cooling Experiment MICE
 - Major U.S. effort to provide key hardware: RF Cavities and couplers, Spectrometer Solenoids, Coupling Coil(s), Partial Return Yoke
 - Experimental and Operations Support

Target & Front End Progress

Muon Ionization Cooling

Muon Ionization Cooling (Design)

coils: R_{in}=42cm, R_{out}=60cm, L=30cm; RF: f=325MHz, L=2x25cm; LiH wedges

Initial 6D Cooling: ε_{6D} 60 cm³ \Rightarrow ~50 mm³; Trans = 67%

May 8, 2015 **Fermilab**

6D Rectilinear Vacuum Cooling Channel (replaces Guggenheim concept): Trans = 55%(40%) without(with) bunch recombination

Muon Ionization Cooling (Design)

• Helical Cooling Channel (Gas-filled RF Cavities): $\epsilon_T = 0.6$ mm, $\epsilon_L = 0.3$ mm

Muon Ionization Cooling (Design)

1

2

8

g

g

2

Bunch Merge

- MAP Baseline Designs offer Factor >10⁵ in emittance reduction
- Alternative and Advanced Concepts
 - Hybrid Rectilinear Channel (gas-filled structures)
 - Parametric Ionization Cooling
 - Alternative Final Cooling
 - ⇒ Early stages of existing scheme
 ⇒ Round-to-flat Beam Transform

 - Transverse Bunch Slicing
 - ➡ Longitudinal Coalescing (at ~10s of GeV)
 - our original target parameters

MASS identified extension of the 6D cooling concepts and modification of Final Cooling scheme to be one of most likely areas of performance improvement

Cooling Technology R&D

Breakthrough in HTS Cable Performance with Cables Matching Strand Performance

FNAL-Tech Div T. Shen-Early Career Award

Successful Operation of 805 MHz "All Seasons" Cavity in 5T Magnetic Field under Vacuum

MuCool Test Area/Muons Inc

MICE 201 MHz RF Module – *MTA Acceptance Test in B-field Complete* 11MV/m in Fringe of 5T Lab-G Solenoid <4×10⁻⁷ Spark Rate (0 observed)

in up to 5 T B-field

25

20

15

10

Demonstration of High Pressure RF Cavity <u>in 3T</u> Magnetic Field with Beam

> Extrapolates to required µ-Collider Parameters MuCool Test Area

World Record HTSonly Coil 15T on-axis field (16T on coil)

R. Gupta PBL/BN'-

Cooling Technology R&D

Cooling Technology Status

- Magnets
 - MAP Initial Baseline Selection process has yielded 6D cooling baselines that do *not* require HTS magnets
 - HTS Solenoids may be required as part of a higher performance 6D Cooling Channel and for parts of the Final Cooling Channel
- RF Cavities
 - The successful test in magnetic field of the MICE RF Module Prototype demonstrates
 - The importance of surface preparation
 - The importance of detailed simulation in magnetic field as part of the design process
 - High Pressure Gas-Filled RF Cavities provide a demonstrated route to the required gradients with high intensity muon beams
 - Recent results with vacuum RF cavities in magnetic field have shown results consistent with our physical models
 - 805 MHz "Modular" Cavity: A test vehicle to characterize breakdown effects in vacuum cavities
 - » SCRF-style surface preparation
 - » Design optimized for use in magnetic field
 - » Data-taking has begun

The MAP Feasibility Assessment aimed to provide a full 6D cell prototype for testing at high beam intensity in the MTA

MICE Demonstration @ RAL

MICE Installation/Commissioning

Integration and Preliminary Commissioning Underway

Formal start of Channel Commissioning in June

Technology Challenges - Acceleration
Muons require an ultrafast accelerator chain
⇒ Beyond the capability of "standard designs"
Solutions include:

RCS requires 2 T p-p magnets at f = 400 Hz (U Miss & FNAL)

RLA II 255 m 2 GeV/pass 33 IPAC15

JEMMRLA Proposal: JLAB Electron Model of Muon RLA with Multi-pass Arcs May 8, 2015 Fermilab

Muon Rings

- NF: nuSTORM and NuMAX designs
- Collider: Detailed optics studies for Higgs, 1.5 TeV,

Dipole/Quad

Quad/Dipole

- 3 TeV and now 6 TeV CoM
- -With supporting magnet designs and background studies
- Detector occupancy similar to that seen in the LHC Luminoisty Upgrade

34

May 8, 2015 🛟 Fermilab

CONCLUSION

35 IPAC15

Concluding Remarks

- Neutrino Factory capabilities offer a precision microscope that will likely be needed to fully probe the physics of the neutrino sector
- A multi-TeV muon collider may be the only cost-effective route to lepton collider capabilities at energies > 5 TeV
- For the last 3 years US Muon Accelerator Program has pursued options to deploy muon accelerator capabilities
 - Near-term (vSTORM)
 - Mid-term (NuMAX)
 - Long-term: a muon collider capability that would build on the NF complex and key technical hurdles have been addressed.
- In light of the 2014 P5 recommendations that this directed facility effort no longer fits within the budget-constrained US research portfolio, the US effort is entering a ramp-down phase

Nevertheless, muon accelerator capabilities offer unique potential for the future of high energy physics research

