The 6th International Particle Accelerator Conference, IPAC15

Heavy ion accelerator in China-Status and Initiative

Jiancheng Yang

Accelerator Department Institute of Modern Physics , Chinese Academy of Sciences

2015.05.08, Richmond, Virginia, USA

Outlines

Status of existing facilities

Updates & New developments

Perspectives-New proposal

Heavy ion accelerator in China-Status and Initiative

Status of existing facilities

Low energy facilities

Tandem in China

串列加速器

2×6MV Tandem

Peking University introduced from Oxford University in the late 1980s Ion species : most of heavy ions Application : heavy ion irradiation, accelerator mass spectrometry 2x1.7MV Tandem Beijing Normal University Ion species:H, B, C, O, Al, Si, P Research: ion beam analysis

2x1.7MV Tandem

Institute of nuclear science and technology, Lanzhou university

Main purpose: research of ion collisions with atomic molecular gas, negative ions and solid surface interaction experiment HI-13 Tandem China Institute of Atomic Energy put into operation officially in 1987, provide all kinds of ions except the inert gas

Cyclotron in China

CYCIAE-30 Cyclotron China Institute of Atomic Energy p-30MeV Application: isotope production; delivered beam in 1994

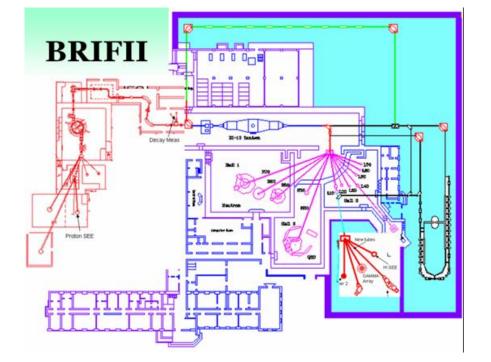
Proton Therapy Center, Wanjie Corporation proton-200MeV, outage now

CS-30 isochronous cyclotron Institute of Nuclear Science and Technology, Sichuan University USA TCC Corporation, p--α, p-26MeV Purpose: medical isotopes and industrial isotopes development and production

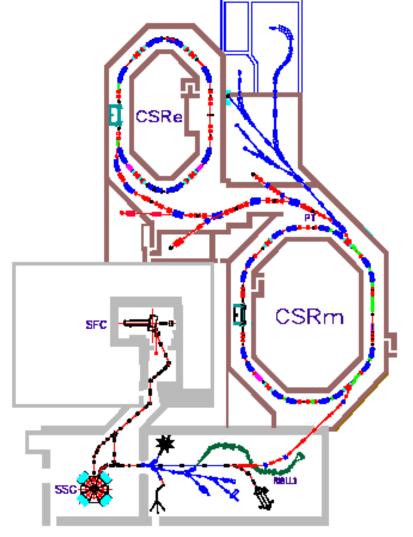
Institute of Fluid Physics proton-11MeV intensity: 50µA delivered beam in 2013

Ultra-sensitive Small Cyclotron Mass Spectrometer Institute of Applied Physics 50KeV, built in 1998

Linac in China



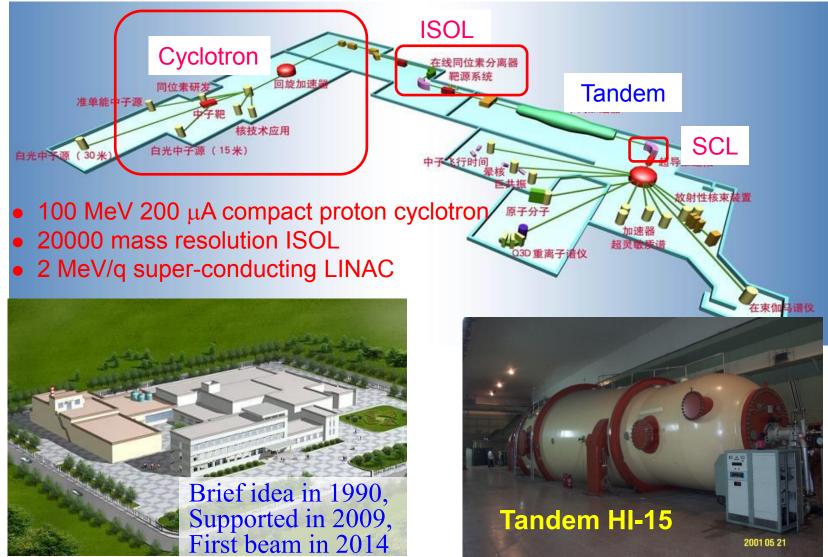
35MeV proton linac BPL Institute of High Energy Physics the first linac of China built in the late 1980s and closed in 2003


ISR RFQ-1000 Peking University overall separation ring high frequency quadrupole field RFQ, built in 1999 Ion species: O+, O-, N+ Duty ratio: 1ms/6ms Energy: 1MeV Frequency: 26MHz

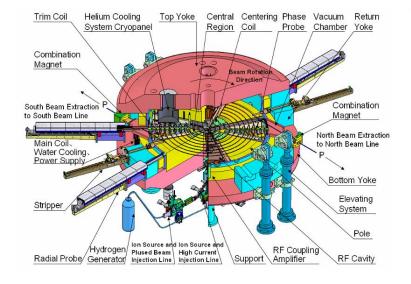
Two major heavy ion facilities in China

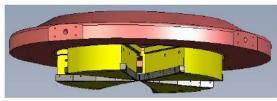
IMP

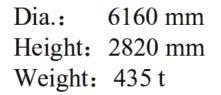
Beijing BRIF, BRIF II , Low E HI, RIB, 2014


Lanzhou, HIRFL Med E HI, RIB, 2008

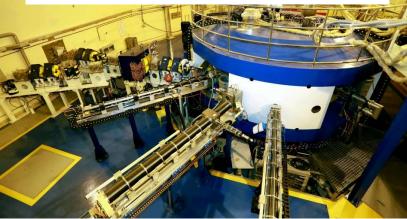
Status of BRIFII

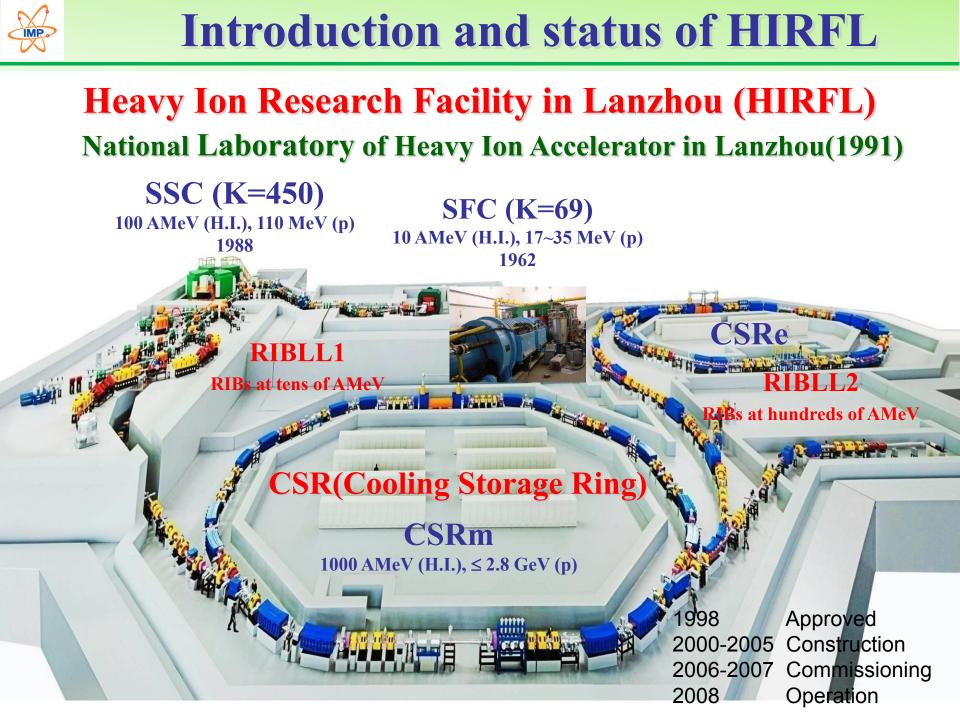

BRIF-(Beijing Rare Ion beam Facility)


1987: Operation & Experiments 2001-2002: update to HI-15

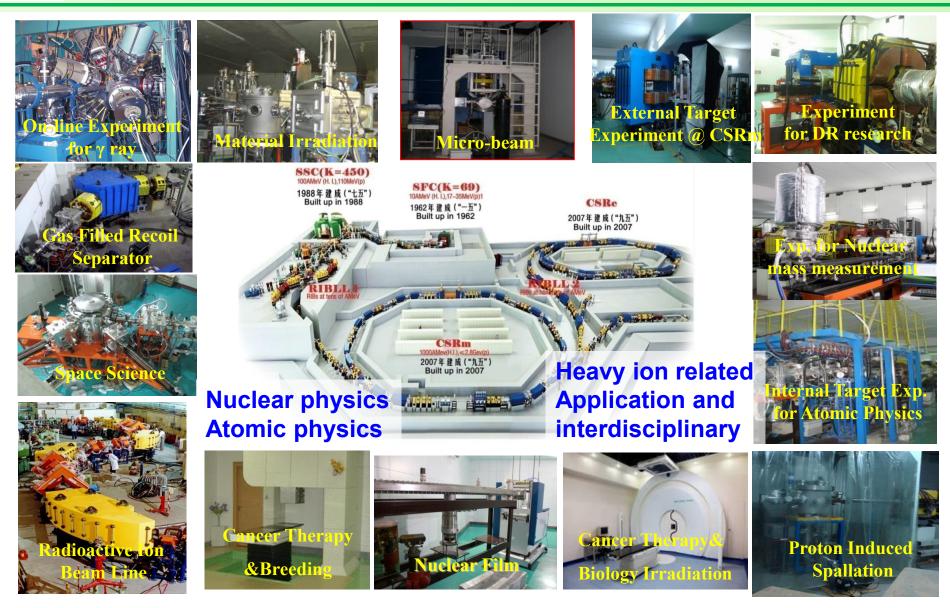


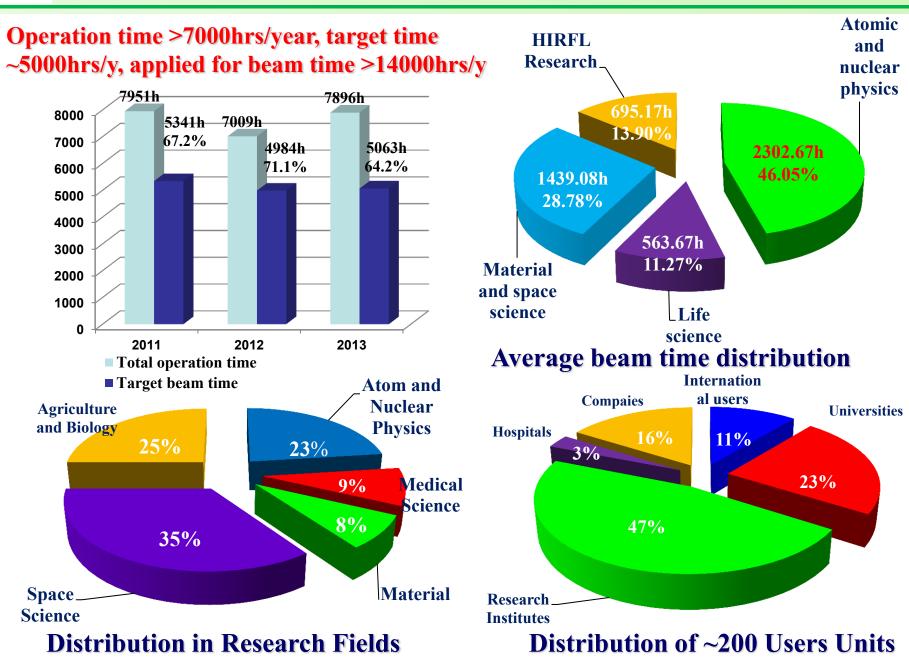
Status of BRIFII





First beam in 2014!!!


Magnet design and fabrication


Main Setups

About 20 apparatuses for heavy-ion physics and applications

IMP

HIRFL status

Typical beam

p ~ U, Total accelerated elements: 21

1 IA IA									C	SR	l:	9	io	ns	5				Cy	/C	lot	ro	ns	: ^	12	io	ns	;					18 VII 0	
1.00794 1 氢. H 0.0899 Hydrogen	2 IIA IIA	-				()indi	t omic v ates lo lived i	ngest- sotope	•		V	8 III A /III	_		Grou Class	p ificati	on						1	в	1 IV IV	в	1 V V	B A	1 VI VI	A	17 VII VII	B A	4.00260 氦 0.1787 Helium	He
<mark>锂 Li</mark> 0.53 Lithium	1.85 Berylliu	3e m					00K) (K, latn			<u> </u>	55.847 铁 7.86 Iron	26 Fe		_	Atom numl Syml	er							10.811 7月 2.535 Boron	В	12.011 碳 2.62 Carbor		14.006 氨。 1.251 Nitrog	N	15.9994 氧。 1.426 Oxyge:	0 n	18.9984 氟 1.696 Fhiorin	F	20.1797 気 0.901 Neon	10 Ne
钠 Na 0.9712 Sodium	24.3050 侯 N 1.741 Magnes	lg im		3 IA IB	N	4 VA VB		5 /A /B	1	6 /IA /IB	V	7 11A 11B		8	v	9 IIA 1II	<u> </u>	10]	1 IE IE	B	1 	2 B B	侣 2.70 Abumi	AI 	2.33 Silicon	Si	30.973) 磷 1.82 Phospl	P	32.066 茯仁 2.07 Sulfur	S	35.4527 氯 3.17 Chlorir	CI	39.948 氩 1.784 Argon	18 Ar
伊 K 0.86 Potassium	40.078 钙 1.55 Calcium	Ca	<mark>钪</mark> 3.0 Scand	Sc ium	4.50 Titani		钒 5.8 Vanad	V	格 7.19 Chros	mium	猛 7.43 Mang	Mn anese	铁 7.86 Iron	Fe	8.90 Cobal	Co	<mark>镍</mark> 8.90 Nicke	Ni 1	63.546 铜 8.96 Coppe	Cu	7.14 Zinc	Zn	69.723 镓 5.91 Galliur	Ga	72.61 锗 5.32 Germa	Ge	5.72 Arseni	As c	4.80 Seleniu	Se m	溴 3.12 Bromir	e	83.80 第 3.74 Kryptor	36 Kr "
1.53 Rubidium	87.62 把 2.6 Strontin	Sr m	纪 4.5 Yttriu	Y m	91.224 倍 6.49 Zireor	Zr nium	92.906 征 8.55 Niobis	Nb m	钼 10.2 Moly	Mo m bdem	· 得 11.5 Techu	netium	钉 12.2 Ruthe	Ru	佬 12.4 Rhodi	Rh m	把 12.0 Pallad	Pd lium	10.5 Silver	Ag	镉 8.648 Cadmi	Cd m	<mark>铟</mark> 7.31 Indiur	<mark>اn</mark>	118.71 锡 7.30 Ti	Sn	121.75 锑 6.618 Antim	Sb	6.24 Telluri	Te ium	4.92 Iodine	1	5.89 Xenon	54 Xe
铯 Cs 1.87 Cesium	钡 3.78 Barium	Ba	観 6.7 Lanth	La anım	给 13.1 Hafni	Hf ium	组 16.6 Tarta	Ta hum	坞 19.3 Tung	W sten	徕 21.0 Rheni		俄 22.59 Osmi	Os um	铱 22.42 Iridiu	lr n	21.4 Platin	Pt um	金 19.3 Gold	Au	汞 13.546 Mercu	Hg	铊 11.85 Thallin	TI m	铅 11.34 Lead	82 Pb	208.98 208.98 9.781 Bismu	Bi	。 9.4 Poloni	Po	 Astatin	At •	氨 9.91 Radon	Rn
(223.02) 87 钫 Fr Francium	(226.03) 信 5.0 Radium	Ra	(227.0 (227.0) (227.0	Ac	_	104 Rf m m	(262.) Dubni	Db	-	106 Sg		Bh	(265.) Hassi	Hs	_	Mt		Ds m		Rg	_	Cn m	. 1	Uut	Û	uq m	Ù	up m	(293.) Ununł	Juh m		us m	U .	Juo m
				-	140.11 • 铈 6.78 Ceriu	Ce		Pr m	钕 7.00	• 60 Nd	钜 6.475	Pm		Sm		Eu	1	Gd		Tb		Dy	164.930 钬 8.80 Holmi	Ho		Er		Tm	173.04 镜 6.98 Ytterbi	Yb		Lu		
₩ # @				-	<u> </u>	⊪ 90 Th		91 Pa	(238.0 住出 19.07	5,92 U		₅ 93 Np	(244.0	₀ 94 Pu	(243.0	6) 95 Am	(247.0	7) 96 Cm	(247.07	97 Bk	(242.06	98 Cf	(252.08 锿 	, 99 Es	(257.) [*] 	100 Fm	(258.)	101 Md m	(259.)	102 No	(260.)	103 Lr		

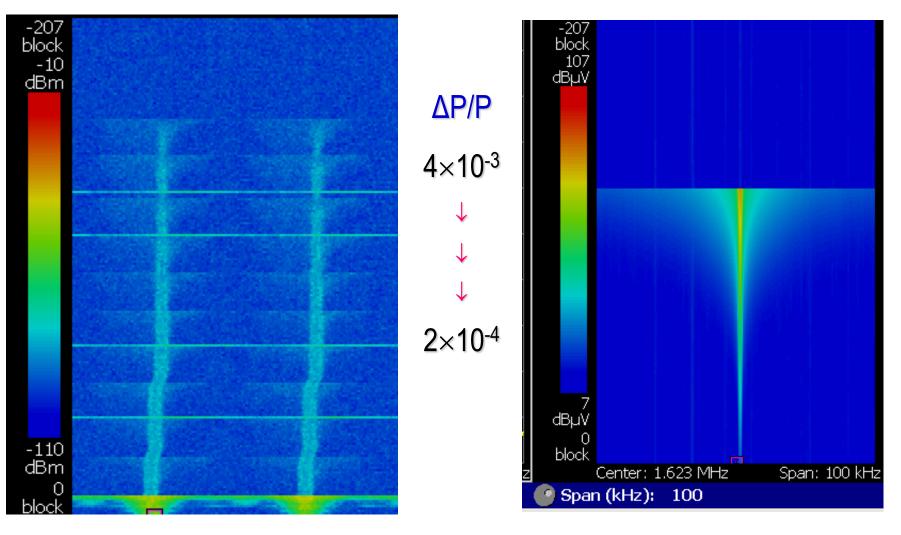
~23 different beam species (~10 new) provided by HIRFL every year

Typical beam

	S	FC	SS	SC	CSR					
lons	Energy AMeV	Intensity eµA	Energy AMeV	Intensity eµA	Energy AMeV	Intensity ppp				
H ₂ ¹⁺	10	7			400	1.40E+08				
⁹ Be ³⁺	6.89	0.55								
¹² C ^{5+/6+}	8.47	2.7	100	0.4						
¹² C ³⁺	4.2	8			122	1.70E+09				
¹² C ^{4+/6+}	7	10			1000	1.00E+09				
¹⁴ N ^{5+/7+}	6.957	6	80	0.4						
¹⁸ O ^{6+/8+}	6.17	5.9	70	0.45						
¹⁸ O ^{6+/8+}	7	4			305.4	1.10E+09				
¹⁹ F ⁷⁺	6.6	3								
²² Ne ^{7+/10+}	6.17	9			70	2.70E+09				
²⁶ Mg ^{8+/12+}	6.17	3.5	70	0.35						
²⁸ Si ^{9+/14+}	6.645	2.2	76	0.15						
³⁶ Ar ⁸⁺	2.0725	16	22	3.3	368	3.90E+08				
³⁵ Cl ¹²⁺	6	1								
³² S ^{11+/16+}	7.112	4.8	82	0.2						
²² Ne ^{7+/10+}	6.17	9			70	2.70E+09				
⁴⁰ Ca ¹²⁺	5.625	3.5								
⁵⁸ Ni ¹⁹⁺	6.3	2.4			463.36	8.30E+07				
⁵⁸ Ni ^{15+/24+}	4.53	2.8	50	0.1						
⁷⁸ Kr ^{19+/28+}	4	4.2			487.9	9.50E+07				
⁸⁶ Kr ^{17+/26+}	2.345	5	25	0.42						
¹²⁹ Xe ²⁷⁺	3	4.5			235	7.20E+07				
¹²⁹ Xe ²⁷⁺	1.844	1.7	19.5	0.4						
¹¹² Sn ^{26+/35+}	3.7	2			392	1.70E+07				
²⁰⁸ Pb ²⁷⁺	1.1	1								
²⁰⁹ Bi ³¹⁺	0.911	0.7	9.5	0.06						
²⁰⁹ Bi ³⁶⁺	2	2			170	1.20E+07				
²³⁸ U ³²⁺	1.22	1			100	4.40E+07				

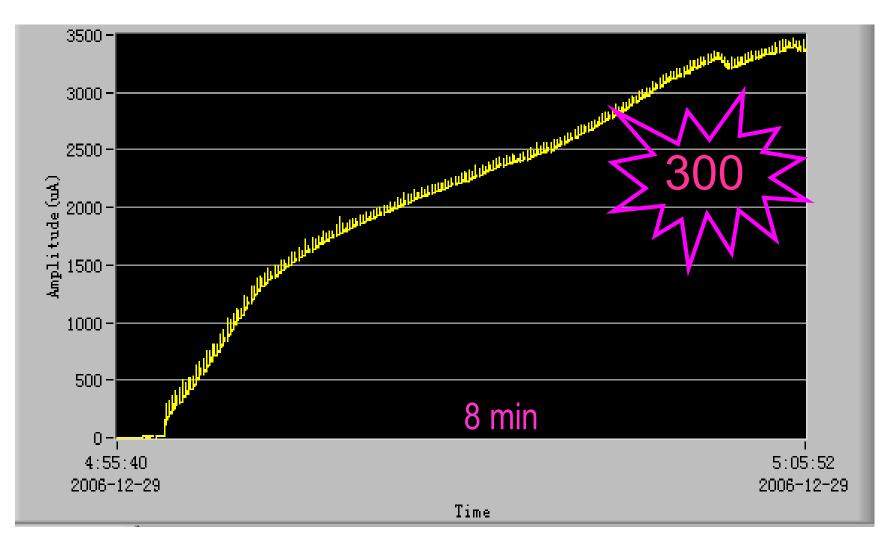
STI+MMI supporting by electron cooling

C, N, O, F, Ne, Ar, Ca, A<40, E = 7--10 MeV/uSFC + CSRm Stripping Injection + E-cooling $\rightarrow \rightarrow I=10^{8}$

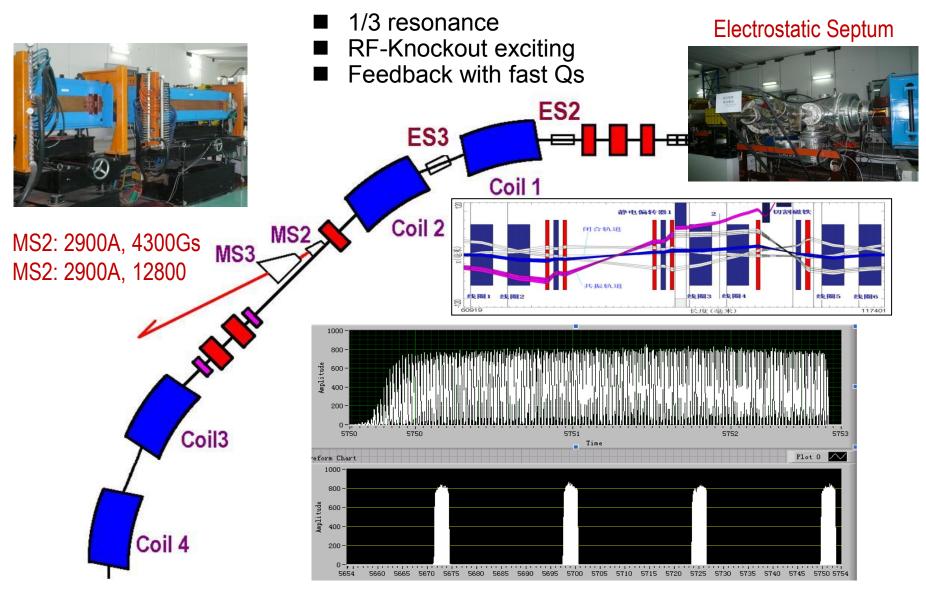

Ar, Kr, Xe, Ta, Au, Pu, U, $A \ge 40$, E = 10---25 MeV/u SFC + SSC + CSRM

Multiple Multi-turn Injection + E-cooling $\rightarrow \rightarrow$ I=10^{7~8}

IMP

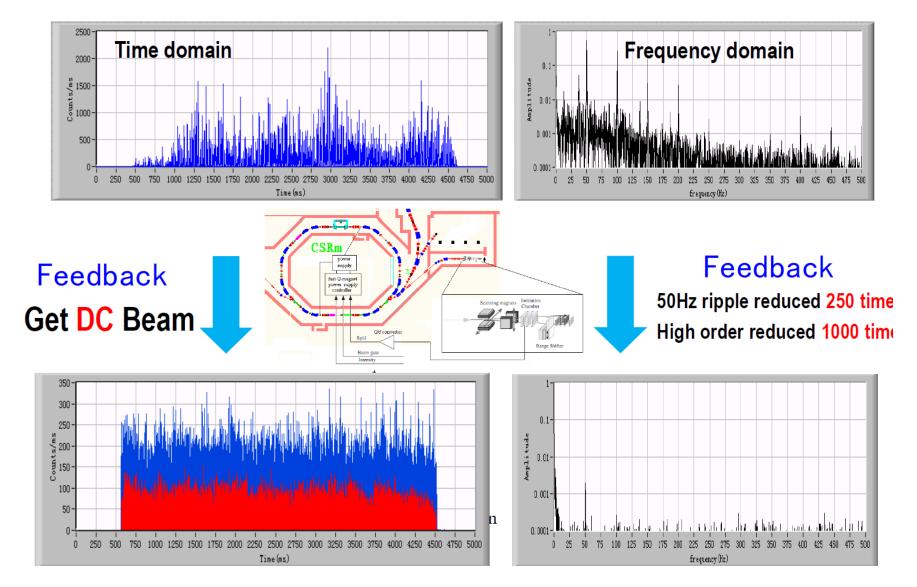

e-cooling effect

C⁶⁺-7MeV/u , observed the longitudinal schottky signal from spectrum analyzer

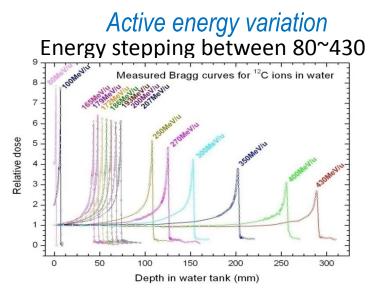


IMP

Beam Accumulation with e-cooing in CSRm I_{ini} =10.2µA, Beam current: 3.2mA, 1.6×10¹⁰, 8min., Gain=300

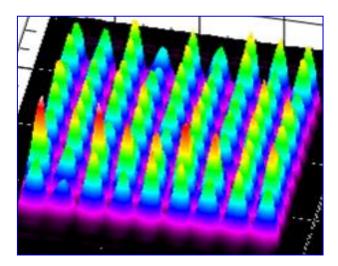


Slow extraction in CSRm

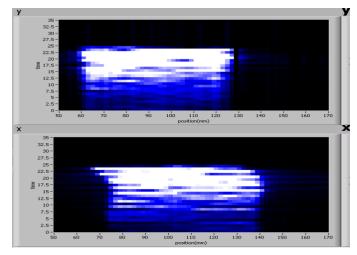


IMF

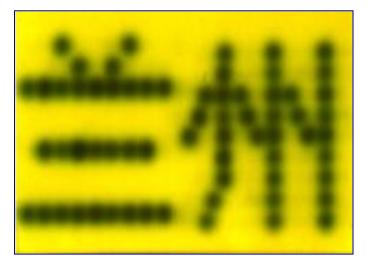
Improve the slow extr. beam quality through feedback

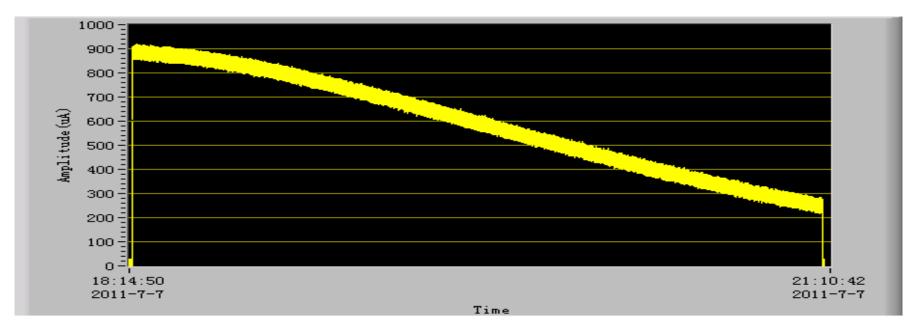


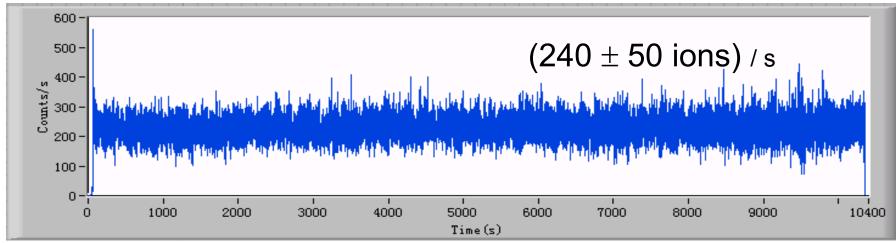
Cancer therapy technique: uniform and active spot scanning



IMF

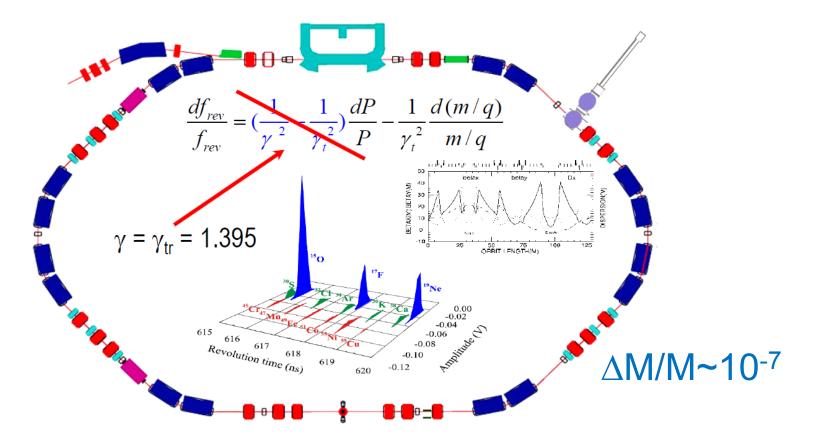

Pencil beam dose shaping


Spot scanning intensity-modulation



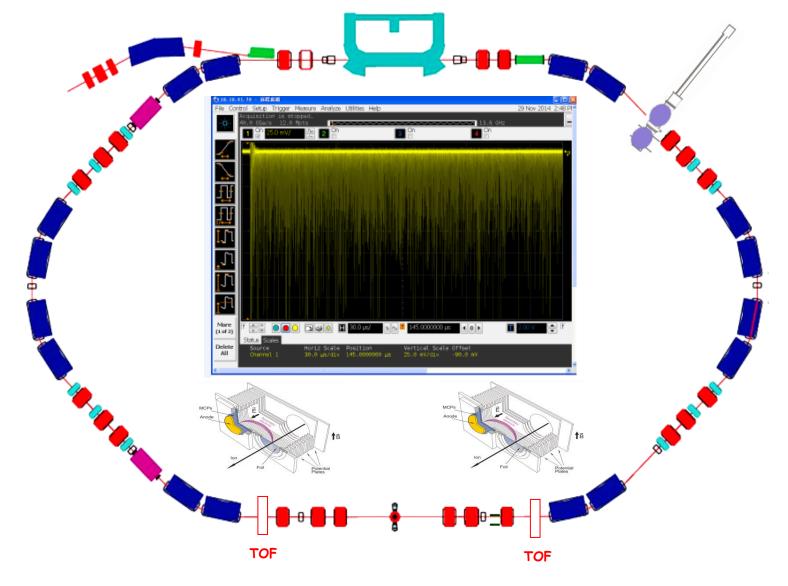
Writing and painting

Long pulse slow extraction from CSRm:10,000s



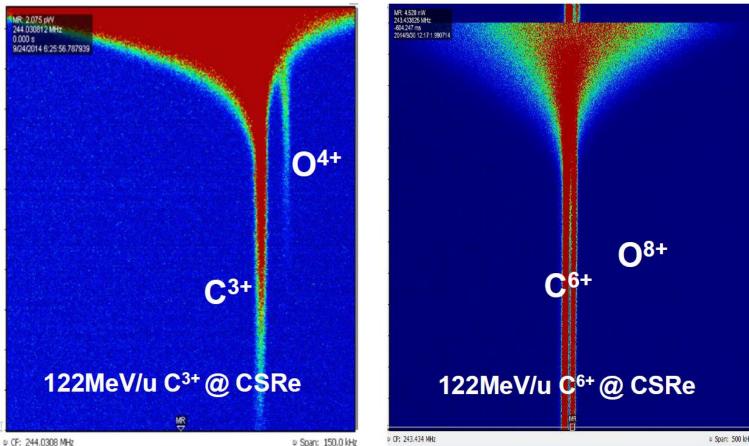
CSRe lattice: Isochronous mode

Mass measurement of short-life time nuclei in CSRe


Beams: ⁵⁸Ni, ⁷⁸Kr, ⁸⁶Kr and ¹¹²Sn

Operation mode: SECR+SFC+CSRm+CSRe, 1.5 months/year

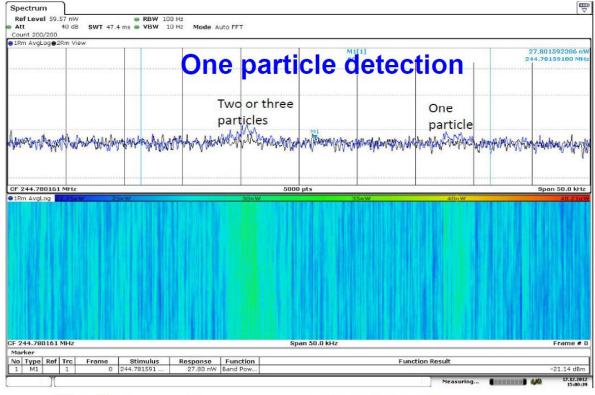
IMP


Two TOF isochronous mode, succeeded several days

Powerful e-cooling effect at CSRe

The final momentum spread reached to below 10⁻⁵

The two beams with same rigidity and same A/Z can be separated with small mass difference

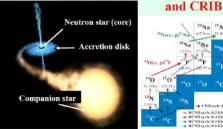


Resonant Schottky Pickup in CSRe

Cooperated with GSI, 2011-2013

High sensitivity and High temporal resolution

¹¹²Sn⁵⁰⁺ beam with an energy of 252.923 MeV/u


Introduction and status of HIRFL Highlights progress

Synthesis of New Isotopes

Nuclear Astrophysics

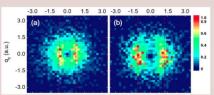
Studies of key (a,p) reactions in Type I X-ray bursts at RIBLL

Publications

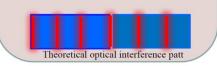
1. J.J. He et al., Eur. Phys. J. A47(2011)67 2. J.J. He et al., Phys. Lett. B725(2013)287 3. J.J. He et al., Phys. Rev. C88(2013)012801R 4. J. Hu et al., Phys. Rev. C90(2014)025803 5. L.Y. Zhang et al., Phys. Rev. C89(2014)015804 6. J.J. He et al., Nucl. Instr. Meth. A680(2012)43 7. S.Z. Chen, Nucl. Instr. Meth. A735(2014)466

RIB physics

RIBLL Collaboration established in 2011, including >16 institutions

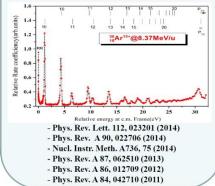


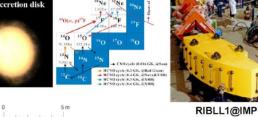
-Phys. Rev. C90, 014606(2014) -Phys. Rev. C87, 024312 (2013) -Phys. Rev. C87, 044613 (2013) -Phys. Lett. B727, 126 (2013) -Phys. Rev. C84, 037603 (2012) -Phys. Rev. C85, 024621 (2012) -Phys. Rev. C81, 054317 (2010) -Phys. Rev. C82, 064316 (2010) -Phys. Rev. C80, 054315 (2009) -Phys. Rev. C80, 014310 (2009)


Atomic Physics

Two-center interference observed in a collision between H₂⁺ projectile used as a double slit and helium target atoms using kinematically complete technique

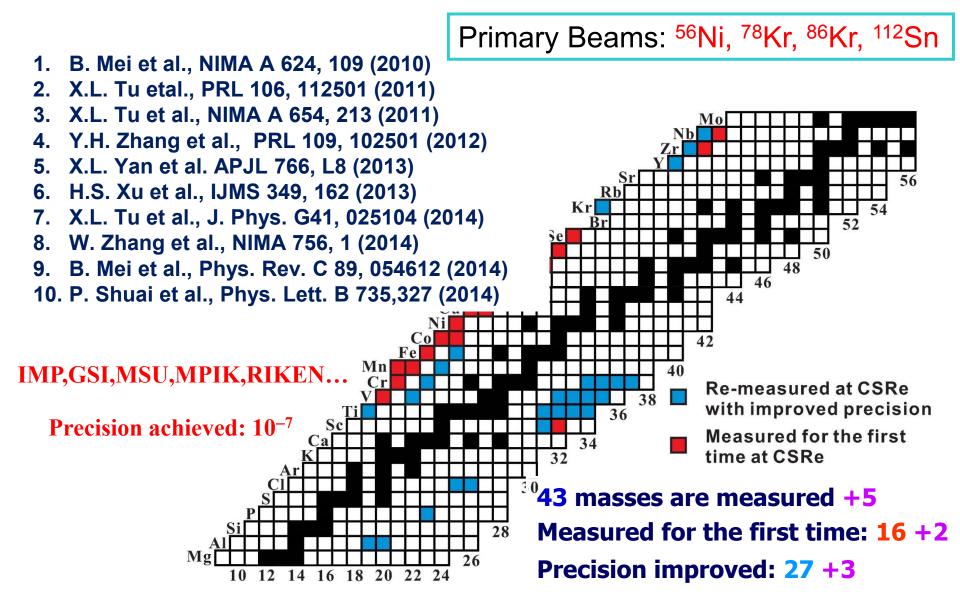
IMP and MPIK collaboration




Momentum transfer pattern @ inter-nuclear distances

Dielectronic recombination spectroscopy at cooler storage ring

The resolution of dielectronic recombination spectroscopy is of 100meV. Paved the way to precision spectroscopy at CSR.



Introduction and status of HIRFL Highlights progress

Mass Measurements

Introduction and status of HIRFL Highlights progress

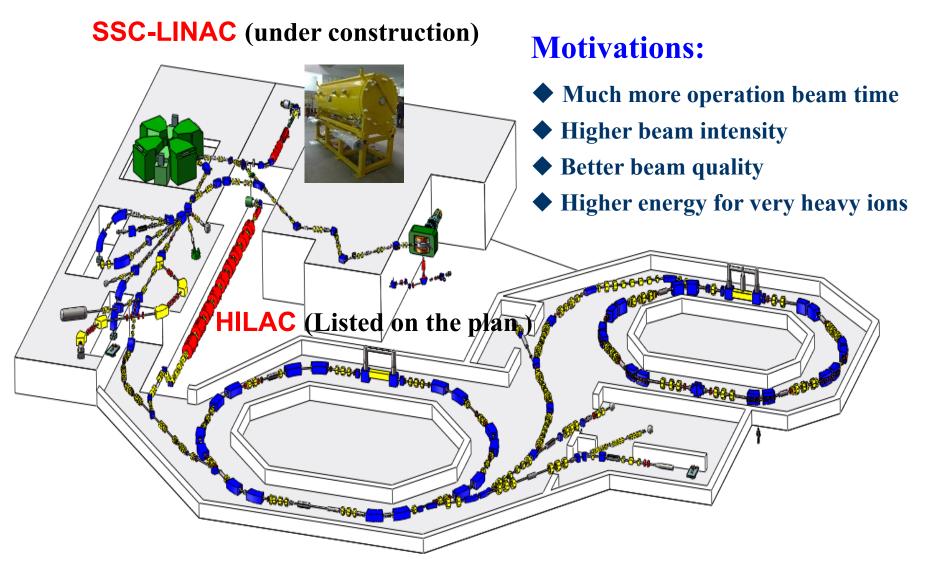
Heavy ion therapy

In collaboration with local hospitals clinical trials for 213 patients of ~ 10 kinds of tumors have been performed

Lung cancer

Before treatment

18 months after irradiation with carbon ion beams


Before treatment

5 months after irradiation with carbon ion beams

Heavy ion accelerator in China-Status and Initiative

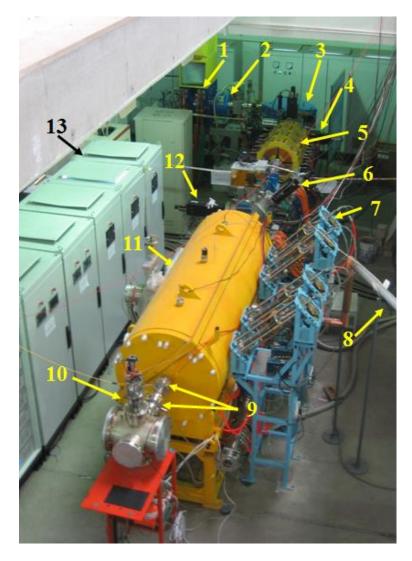
Updates & New Development


• SSC LINAC & CSR LINAC

New development & progress

SSC-LINAC:

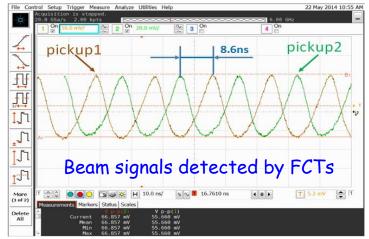
- CW injector for SSC
- ECR ion source + 4-rod type RFQ + quasi-KONUS IH-DTL
- Extraction energy:
 - > $1.025 MeV/u \rightarrow 10.7 MeV/u(SSC) \rightarrow CSRm$
 - > 0.576 MeV/u → 5.97 MeV/u(SSC)


Main parameters of SSC-Linac

SSC-LINAC

Design ion	238U34+
ECR ion source	
Extraction voltage	25kV
Max. axial B _{inj}	2.3 T
Frequency	18GHz
RFQ	4-rod
Frequency	53.667MHz
Input energy	3.728keV/u
Output energy	143keV/u
Gap voltage	70kV
RF power	35kW
Max. current	0.5emA
IH-DTL	KONUS
Frequency	53.667MHz
Input energy	0.143MeV/u
Output energy	1.025MeV/u

New development & progress


SSC-LINAC

SSC-Linac: Test bench

CW RFQ beam commissioning

- •The 1st beam (⁴⁰Ar⁸⁺) in May 2014
- E=142.8±0.21keV/u
- I_{cw}=198 eµA, Beam transmission efficiency of 94%

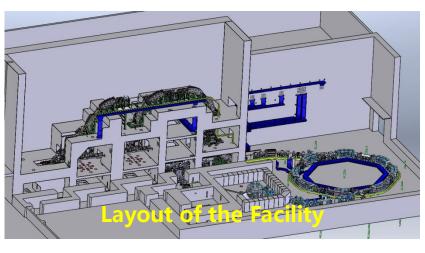
New development & progress Cancer Therapy Facility

Two demo facilities are under construction in Lanzhou city and Wuwei city in Gansu province, and more are under business discussion now

430MeV/u Carbon ions, 1×10⁹ particles/spill

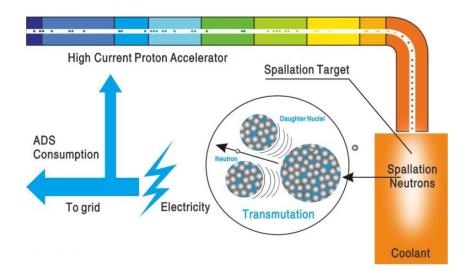
Test center of Therapy Demo Facility

New hosipital at Lanzhou


New hospital at Wuwei

New Progresses of Therapy Demo Facility

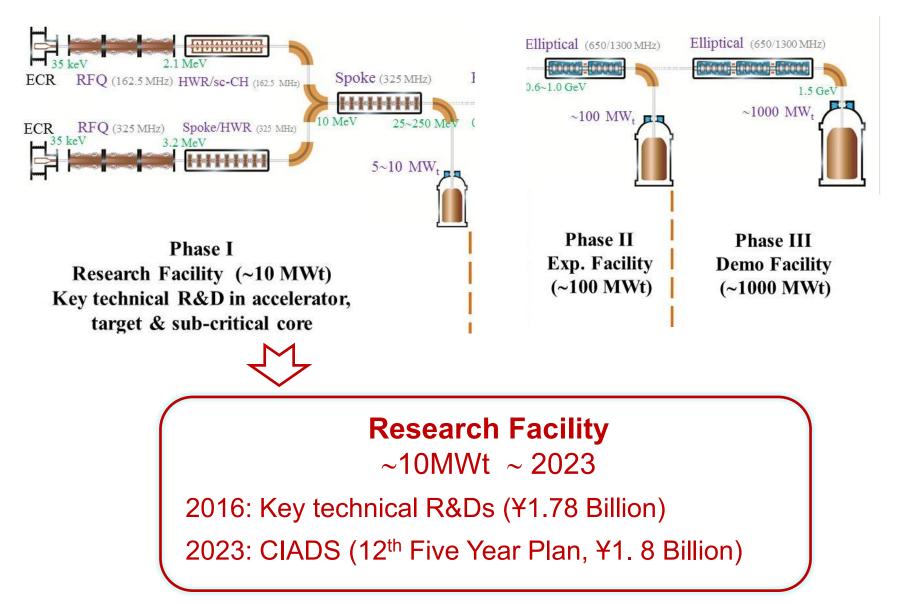
New development & progress ADS Demo Linac Facility

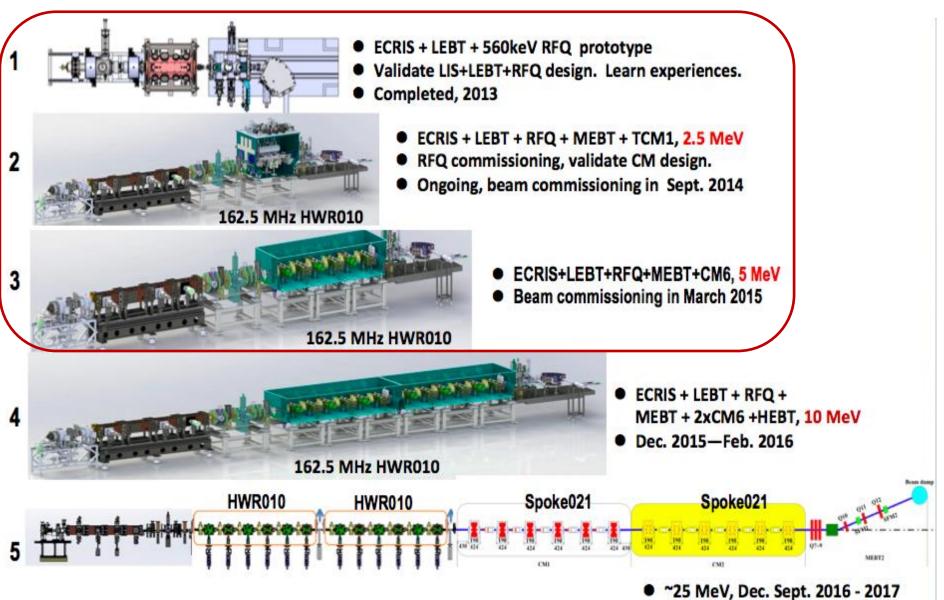

Important Issues for Sustainable NP Development

Management and safe disposal of nuclear waste
 Fuel supply (Uranium~100 years for LWR)

Accelerator Driven System (ADS)

is a promising path to resolve the problems

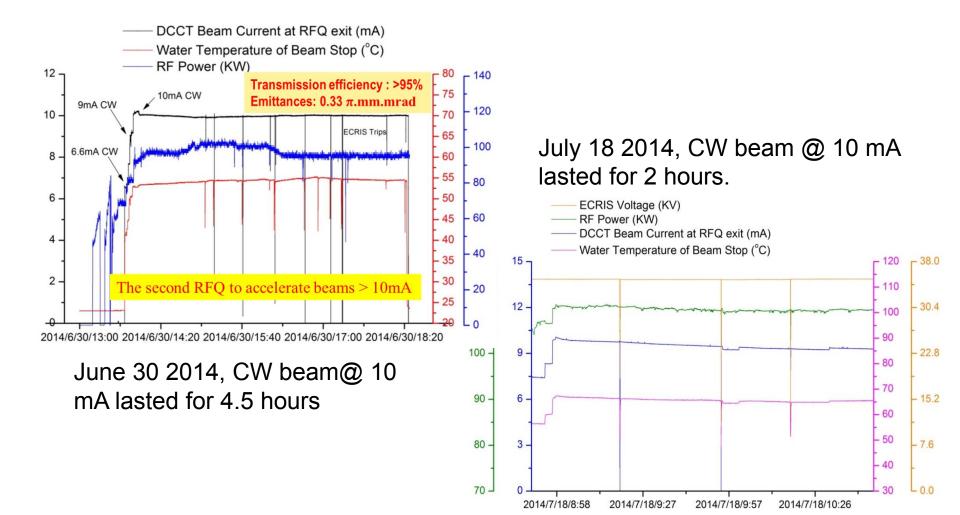

- ADS was proposed for nuclear waste transmutation and nuclear power generation since late 1980s - early 1990's
- ADS consists of a high power proton accelerator, a spallation target, and a sub-critical core, which produces intensive, hard spallation neutrons by bombarding high energy protons on target to drive the sub-critical core


Schematic drawing of ADS

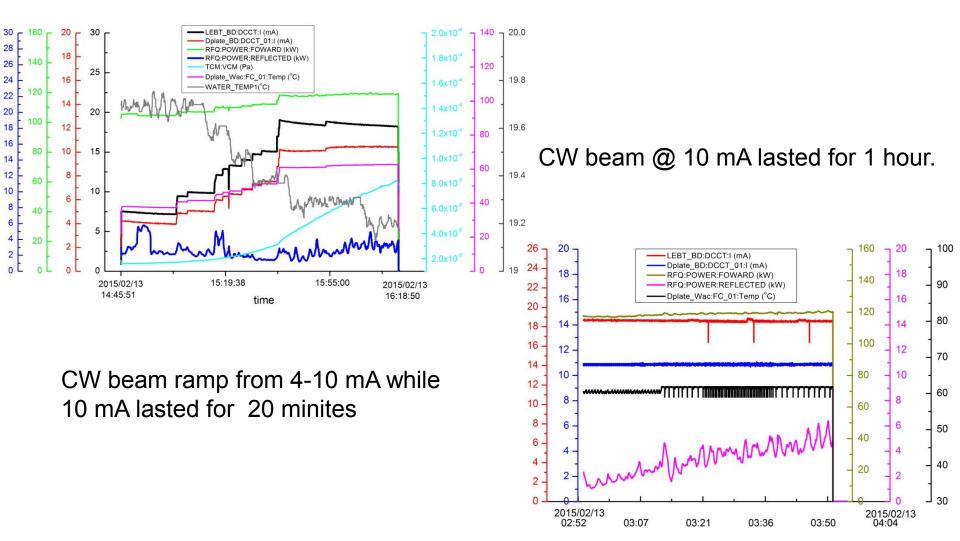
New development & progress ADS Demo Linac Facility

Roadmap for developing ADS facilities in China proposed by CAS

Commissioning Plan of Demo Facility(LINAC)


The 2.5-MeV Demo of Superconducting LINAC

- RFQ operated successfully at 10 mA, CW mode, for many times. the record was 4.5 hours. The rms emittance is 0.2~0.3 pi.mm.mrad, transmission efficiency is 97%.
- MEBT and TCM operated at CW 10 mA 2.5 MeV for 1 hour. HWR operated successfully @ Ep=25MV/m, the design value.


On June 30 2014,

the acceleration of CW beam by RFQ @ 10 mA succeeded



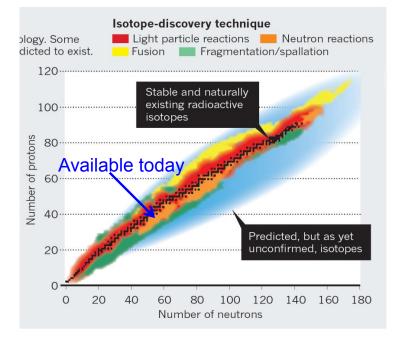
On Feb 13 2015,

the acceleration of CW beam by TCM1 @ 10 mA succeeded

CM6 was assembled online on April 29th 2015, cavity horizontal RF test will be performed in May and beam commissioning will be in June and July.

Heavy ion accelerator in China-Status and Initiative

Perspective-New proposal

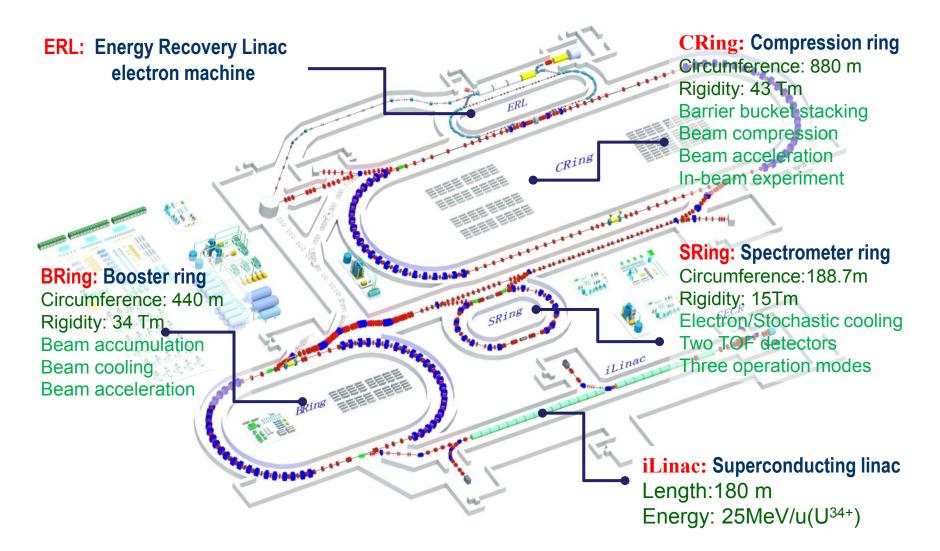


High Intensity heavy ion Accelerator Facility

HIAF: One of 16 large-scale research facilities proposed in China in order to boost basic science, now under design optimization and technical R&D

- Proposed by IMP in 2009.
- Approved in principle by the central government in the end of the 2012.
- Design Report(v1.0) was published in July 2014

Next-generation high intensity facilities are required for advances in nuclear physics and related research fields:


Fascinating and crucial questions

- To explore the limit of nuclear existence
- To study exotic nuclear structure
- Understand the origin of the elements
- To study the properties of High Energy and Density Matter

HIAF: Multi-purpose facility

with unprecedented parameters

Multi-purpose facility

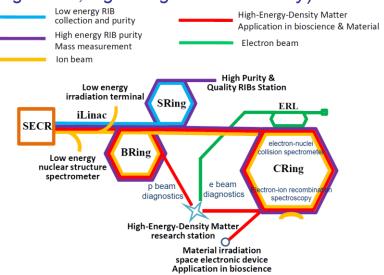
with unprecedented parameters

Unprecedented beam Intensity(Comparison with HIRFL):

- Primary beam intensity increases by x 1000 x 10000
- secondary beam intensity increases by up to x 10000

Precisely-tailored beams

- beam cooling (Electron, Stochastic, laser; high quality, very small spot)
- Beam compression (Ultra-short bunch length: 50-100ns)
- super long period slow extraction (Super long, high energy, quasi-continuous beam)

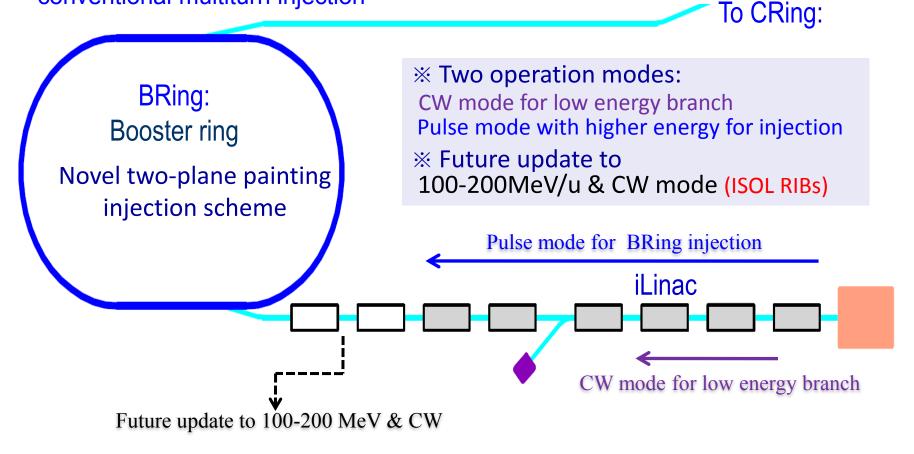

Wide beam Energy:

- heavy-ion energy : x 10 - x 15

Versatile operation modes:

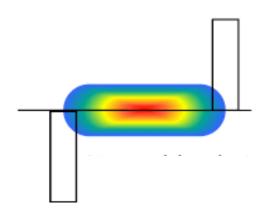
- parallel operation, beam splitting (increase of target time, high integrated luminosity)

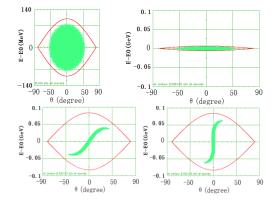
	lons	Energy	Intensity
SECR	U ³⁴⁺	14 keV/u	0.05 pmA
iLinac	U ³⁴⁺	25 MeV/u	0.028 pmA
BRing	U ³⁴⁺	0.8 GeV/u	~1.4×10 ¹¹ ppp
CPing	U ³⁴⁺	1.1 GeV/u	~5.0×10 ¹¹ ppp
CRing	U ⁹²⁺	4.1 GeV/u	~2.0×10 ¹¹ ppp

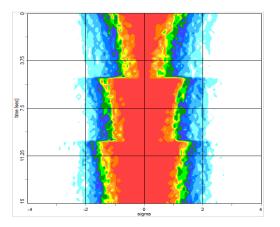


Unique feature-1

Superconducting Linac +Two-plane painting injection scheme (Highly cost-effective accelerator layout to provide high intensity ion beam)


The first time to adopt two-plane painting injection for heavy ion in the world, the accumulation factor can reach nearly 150 for single injection, 5-10 over conventional multiturn injection



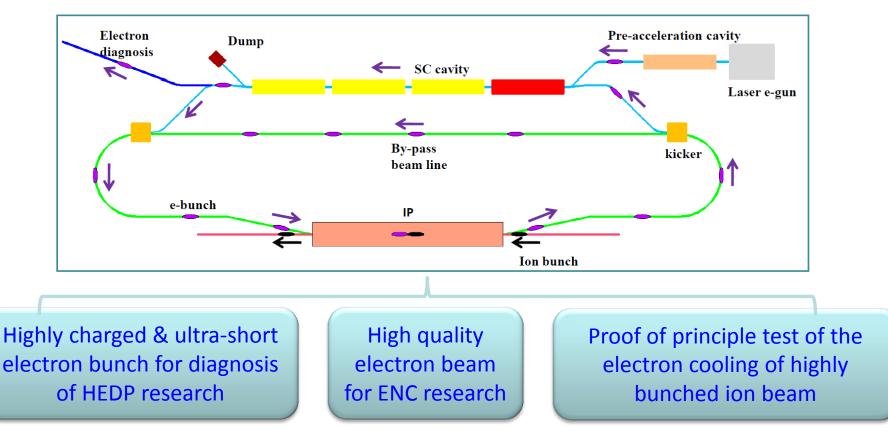


Unique feature-2

Barrier bucket + beam compression + beam cooling Highly sophisticated scheme for high intensity ultra-short pulse ion beams

Barrier bucket stacking from BRing to CRing 4-5 times increase of beam intensity 5.0×10¹¹ ppp (U³⁴⁺) Beam compression in CRing 5-6 times reduction of bunch length 50-100 ns

High energy electron cooling in CRing 4-5 times reduced beam size 0.5-1.0 mm



Unique feature-3

Multifunction electron machine based on ERL technology

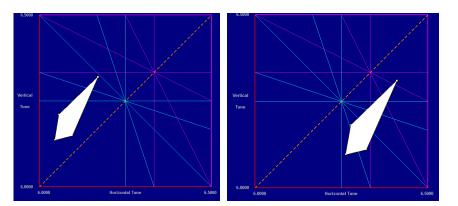
Two advanced technologies: Energy Recovery Linac & compact circulator ring

- O Perfect solution for the high power beam dumping and low operational cost
- The compact circulator ring will reduce the required electron current from the cathode and ERL by a factor equal to the number of circulations

Beam dynamics challenges & studies

Topics:

- Space charge limit and optimized working point
- Control of the dynamic vacuum pressure
- **o** Design and simulation of two-plane painting injection
- o Longitudinal barrier bucket stacking of high intensity beam
- o Ultra-short bunch compression


HIAF project in China

HIAF dynamics Challenge & studies -1

Space charge effect

lons	Energy (MeV/u)	SCL intensity
р	70	2.1 × 10 ¹³
¹² C ⁶⁺	75	7.5 × 10 ¹¹
¹⁶ O ⁸⁺	50	3.6 × 10 ¹¹
⁷⁸ Kr ²⁹⁺	40	1.1 × 10 ¹¹
²³⁸ U ³⁴⁺	17	9.6 × 10 ¹⁰
²³⁸ U ³⁴⁺	25	1.4 × 10 ¹¹
²³⁸ U ³⁴⁺	50	3.0 × 10 ¹¹

Challenges:

Two work points are considered: (6.17,6.32) and (6.41,6.31)

– Long storage time at injection energy

The incoherent tune shift is tolerable for relatively short "waiting time"(\sim ms), but how much is it for the accumulation time in the presence of electron cooling (\sim 10s)? Long-term 3D particle tracking studies are in progress to find the tolerable tune shift

- High intensity beam accumulation with fast electron cooling

Effective electron cooling: angle between electron and ion beams, hollow electron beam Beam dynamics simulation code is under development in cooperation with BINP

Developed simulation codes, studied the space charge effect and find the optimized work points.

Bending magnet

Desorption from

gas-covered chamber w

HIAF dynamics Challenge & studies -2 Dynamic vacuum

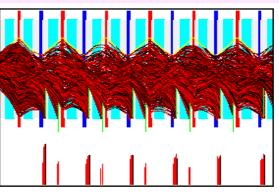
Beam loss mechanism:

Charge exchange of intermediate charge state ions ($^{238}U^{34+}$) due to collision

 $U^{34+} + X \rightarrow U^{35+} + X + e$

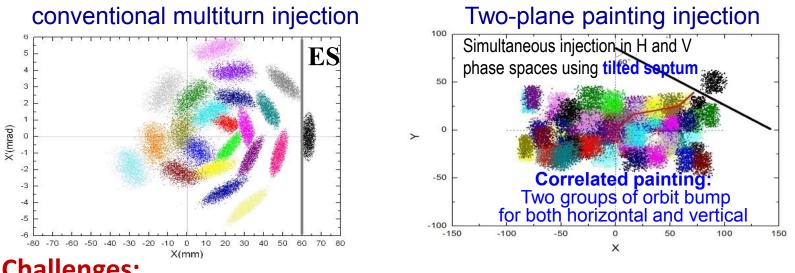
Challenges:

- How to get the high collimation efficiency? Near to 100%
- How to optimize the lattice for different types of particles?
- How to design the collimator? the mechanical design, control system, vacuum system test.


Charge exchange processes:

Electron loss and capture

A dedicated dynamic vacuum simulation code-HIAF-DYSD has been developed for the optimization of dynamics design.


Simulation of HIAFBeam				
File Particle Fing Collimator Yacuum Prors Yielp Beam From Injector A Name Z Q deltaQ A Name Z Q deltaQ Beam Geometry Parameters 238 JU SQ 282 I X Y Energy 200 MeV/u Enit 34 14 Function				
Brho 18.21216 Tm dp/p 0.2 ±% Dp/p -3.57 % No. of Particles per slice: 2 Sigmas of Inj. Beam Dist.: 1	alpha 1.2833 -0.1 beta 16.598 6.55			
No. of Particles Exchange: 1 No. of Particles Lost: 0 No. of Turns Calculated: 1	☐ Calculated from Winag File	ile C Gauss Dis C Average Dis Tracking		

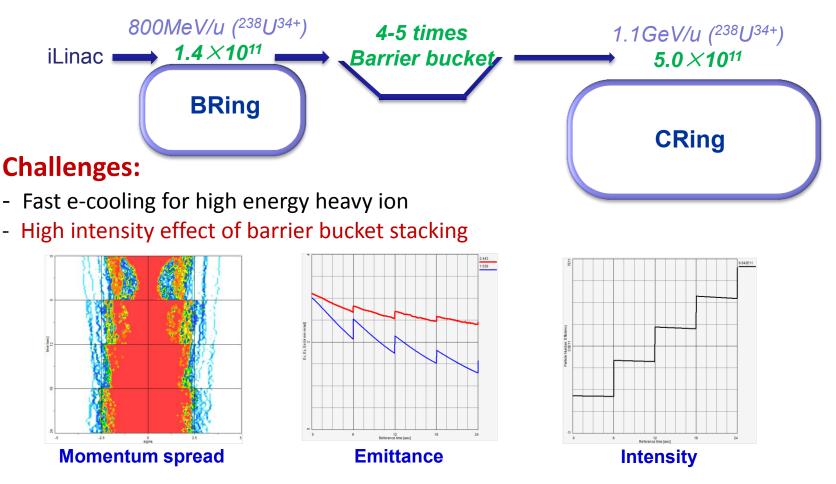
Simulation Code HIAF-DYSD

HIAF dynamics Challenge & studies -3 Two-plane painting injection

Challenges:

□ Many beam dynamics issues should be studied carefully *r*ing lattice, injection optics match, septum angle The first time to adopt the tilted septum injection in the world

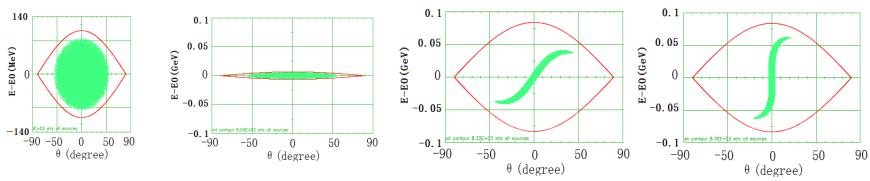
The dynamics design of two-plane injection has been finished for BRing


lons	Energy (MeV/u)	Injection current (pmA)	Plane	Injection turns	Single injection	Number of injection	intensity
			Н	33	3.3×10 ¹⁰	10	3.3×10 ¹¹
238U34+	25	0.028	V	16	1.6×10 ¹⁰	20	3.3×10 ¹¹
			H+V	150	1.6×10 ¹¹	2	3.3×10 ¹¹

HIAF dynamics Challenge & studies -4

Barrier bucket stacking

Goals: 4-5 times increase of beam intensity through barrier bucket



Beam dynamics design has been finished and under optimization

HIAF dynamics Challenge & studies -5 Ultra short beam compression

Goals: Ultra-short bunch length for High Energy Density Physics

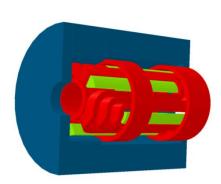
The short bunch can be obtained by fast bunch rotation

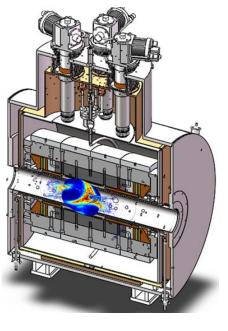
Challenges:

- Efficient e-cooling to reduce the momentum spread
- Control of the beam loss during bunch rotation
- Magnetic alloy compression cavity design and fabrication

The preliminary design of the beam compression scheme has been completed. Two methods: K-V envelope equation and PIC code of ESME are used for simulation.

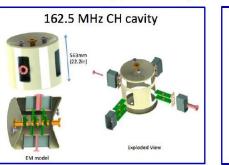
Technical challenges and R&D


- ※ Superconducting ECR
- X Superconducting Linac
- X Dynamic vacuum collimator
- **X** Superconducting magnet
- **Electron cooling**
- X Stochastic cooling



HIAF technical R&D-1

Superconducting ECR

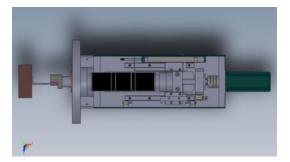

None of existing highly charged ion sources can meet HIAF requirements for the moment. Next generation (4th) ECR source is under construction with the new magnet configuration and high RF frequency 40-50GHz.

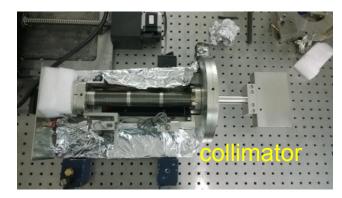
Superconducting linac

Several types of superconducting cavities has been developed at IMP for HIAF

HIAF project in China

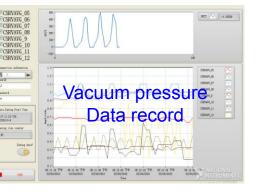
HIAF technical R&D-2


Collimator prototype development


Two steps plan for collimator development and a prototype is under construction

First step:Test platform

Desorption measurement Control system and vacuum system test Install at PISA or E-point


Second step Collimator prototype of CSRm Beam loss measurement

Fabrication of hardware components

The mechanical design has been finished

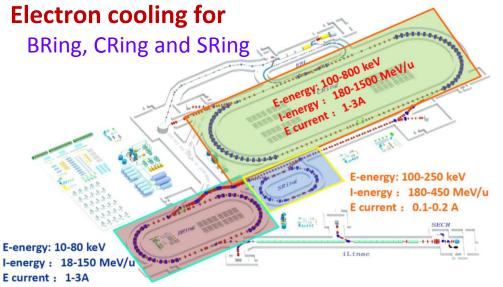

HIAF technical R&D-4

Super-ferric dipole with warm iron yoke

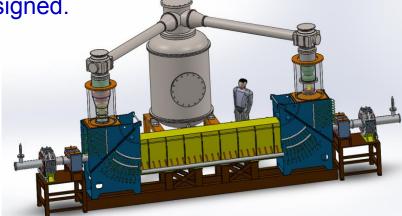
• The dipole prototype for HIAF is under development in IMP. The fabrication has been finished and will be tested in few months.

Fabrication of superconducting cable

Fabrication of coil case



Fabrication of cryostat



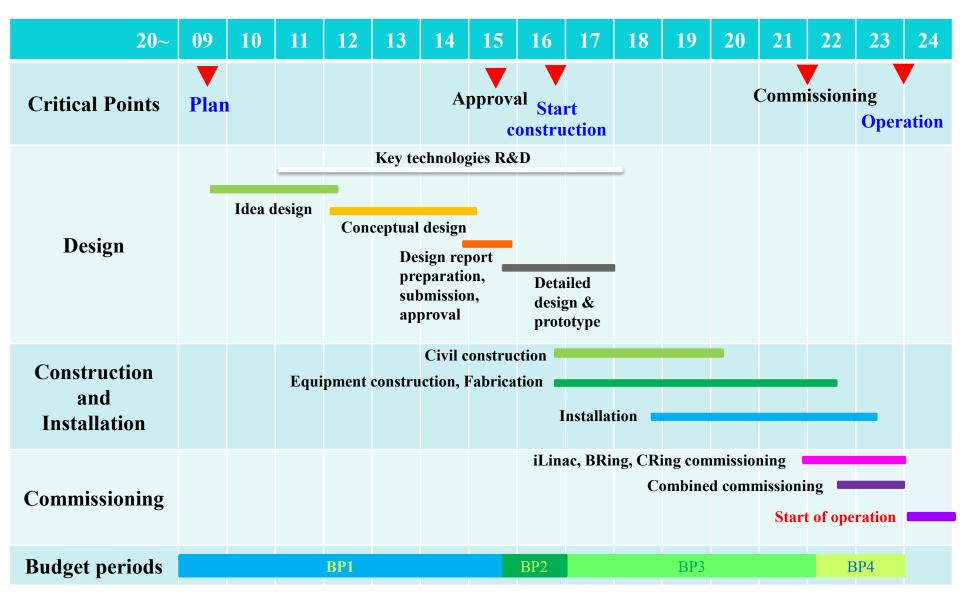
HIAF technical R&D-5

Beam cooling technique

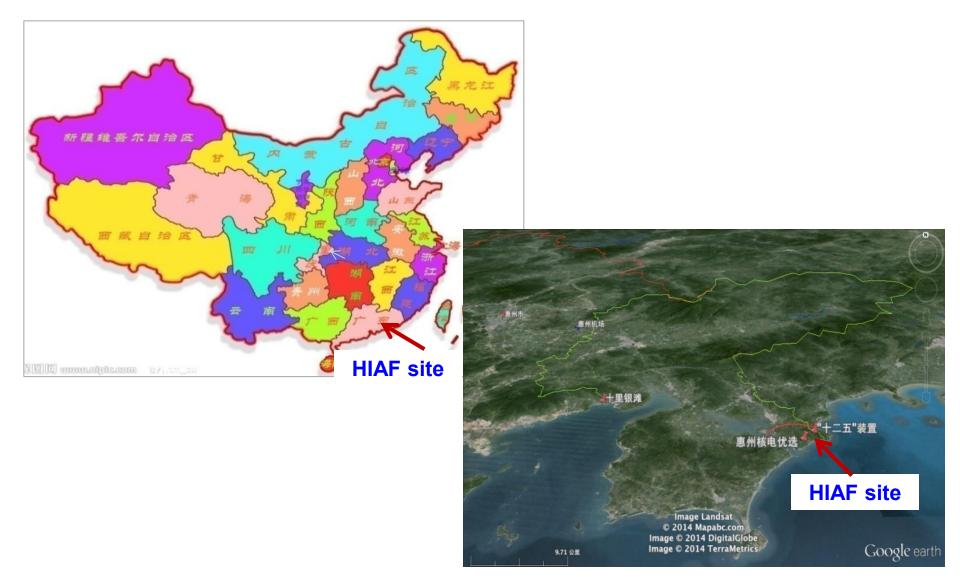
Based on well-established electron cooling of existing facility, new electron cooling device has been designed.

Stochastic cooling

A novel type of 2.76 m long slotted pick-up was developed (in cooperation with CERN and GSI) for CSRe stochastic cooling. the tuning of machine will start next year.

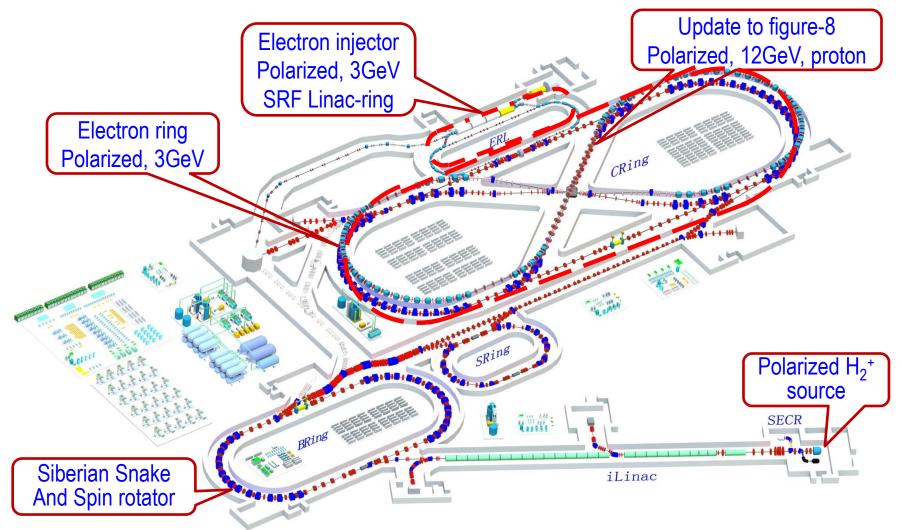

Budget of HIAF (1st phase)

Items	1 st phase (MRMB)			
iLinac	550			
BRing	320			
CRing	370			
eLinac	50			
ERing				
High energy electron cooling				
Beam transfer line	50			
Experiment setups	330			
Cryogenics	205			
Civil engineering	245			
Tunnel construction	180			
Contingency cost	70			
	2370			
Total of facility	(central government)			
	1400			
Land & infrastructure	(local government)			
Total	3770			


HIAF project in China

Schedule for the HIAF (1st phase)

Site of HIAF project-new campus



Site of HIAF project-new campus

HIAF second phase-EIC

A High Luminosity Electron-lon Collider A New Experimental Quest to Study the Sea quark and Gluon

HIAF design of first phase maintains a well defined path for EIC

The 6th International Particle Accelerator Conference, IPAC15

Thanks

for your attention

2015.05.08, Richmond, Virginia, USA