CONTROL OF SYNCHROTRON RADIATION EFFECTS DURING RECIRCULATION WITH BUNCH COMPRESSION*

D.R. Douglas[#], S.V. Benson, R. Li, Y. Roblin, C.D. Tennant, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA,

G.A. Krafft, B. Terzic, Old Dominion University, Norfolk, VA, 23529, USA

C.-Y. Tsai, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA

must

 6th International Particle Accelerator Conference
 I

 100 pur
 15BN: 978-3-95450-168-7

 CONTROL OF SYNCHROTRON RECIRCULATION WITH

 Translation of the synchronic contract of the synchronic co with positive momentum compaction [2]. It controls both $\stackrel{\circ}{=}$ incoherent and coherent synchrotron radiation (ISR and ECSR) using methods including optics balance [3] and gain. We detail the gain. We detail the design, discuss the design grocess, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a set analysis of microbunction.

METHODS FOR CSR/ISR CONTROL

work Recirculation and energy recovery are established means of cost-performance optimization. Their use for FEL drivers can be challenging because of the impact of ECSR on beam quality, and the desirability of limiting The machine size and complexity. Here, we describe a method is providing bunch length compression and recirculation in a modest footprint (\sim 10 m diameter at \sim 1 GeV) while Elimiting beam quality degradation due to CSR. The method is scalable to higher energy (by increasing bend 15 radius and machine diameter).

(© 201 "Conventional" Compressor Design

A FODO-based recirculation arc can be used as a compressor; as M56>0, an incident bunch with an \overline{o} appropriate energy chirp will be compressed with advantages discussed elsewhere [5]. When employed as a means of final bunch compression, the impact of CSR is bowever dramatic and detrimental. Using a simple 1-D ECSR model in DIMAD [6], we studied compression of a 5150 pC, 0.5 µm-rad normalized emittance beam to ~ 70 fsec x 0.1% $\delta p/p$ while bending through 180° at 0.71 GeV in an arc comprising eight quarter-integer FODO cells $\stackrel{\circ}{=}$ with bend radius of 2 m. The beam emittance increases as $\frac{1}{2}$ a consequence of phase space redistribution driven by the Ξ CSR interaction, but effects can be mitigated as follows: from this work may be used

Chromatically correct the lattice and compensate 1. lattice and CSR-induced curvature in the longitudinal phase space, *i.e.*, set T₅₆₆. Here, this is assumed to have been done in upstream transport so as to allow compression of small relative momentum spreads while avoiding use of strong nonlinearities. We model it with a quadratic phase-energy correlation in the incoming beam (a T₆₅₅ term).

- 2. Introduce lattice perturbations to suppress linear x- $\delta p/p$ and x'- $\delta p/p$ correlations in the beam by introducing perturbative dispersion trims.
- Trim chromatic corrections to suppress CSR-3. induced nonlinear phase space distortions [7].
- Optimize the betatron match by varving beam 4. input parameters to minimize output emittance.

After optimization, the output emittance was ~2 mmmrad, representing a factor of four growth in the input.

The cause of the phase space redistribution is clear: as the bunch compresses, energy modulation across the bunch due to CSR increase dramatically. As a result, the compensation described by Di Mitri et al. [8] breaks down despite the presence of desirable betatron phase and amplitude relationships inherent to the achromat. Small shifts introduced when the bunch is long are inadequate to offset the larger shifts induced when the bunch is short.

Excitation-Modulated Compressor Design

Breakdown in emittance compensation can be mitigated by redistribution of bending along the beamline and optimization as described above. The method is simple: increase the angle of bending in initial FODO cells - thereby enhancing the impact of CSR early in the beam line while the bunch is long - and decrease the bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. Initial simulation of such an excitation-modulated system shows immediate benefit. An optimized linearly declining bend (using dipoles of 40° , 35° , 30° ,... 10° , 5°) presented less emittance degradation than a conventional arc. Guided by the concepts of optics balance [9] and magnifying achromats [10] (in both, upstream and downstream perturbations are balanced by the choice of the intervening lattice optics), we added a dispersion generator to provide additional control of the beam and lattice, and manually adjusted the bending pattern to minimize output emittance. Care in selection of bend angles further reduced emittance dilution; choice of bend radius managed ISR effects.

As in the conventional arc, the degraded output phase space presented correlated distortions that could be compensated by perturbing the beam line optics as described above, limiting growth of normalized emittance from 0.5 to 1 µm-rad, a factor of two lower than in the

^{*} This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. #douglas@jlab.org

conventional system. Longitudinal emittance is controlled by both arcs. Further improvement in performance might be given by using more robust optimization methods [11].

Table 1 summarizes key parameters. Figure 1 shows beamline layouts for both example systems; Figures 2 and 3 illustrate optimized Twiss parameters for each case. Figures 4 and 5 give delivered 10^4 particle phase spaces for the uniform FODO and modulated compressor.

Figure 1: Conventional FO0DO and excitation-modulated compressor layouts. Quadrupoles and beam line in black; conventional line bends in brown, modulated line in blue.

Figure 2: Twiss functions for FODO compressor.

Figure 3: Twiss functions for modulated compressor.

Figure 4: Bend plane (left) and longitudinal (right) phase space output from FODO arc compressor.

Figure 5: Bend plane (left) and longitudinal (right) phase space output from excitation-modulated compressor.

2: Photon Sources and Electron Accelerators

 Table 1: Compressor Arc Parameters

 FODO
 Modulated

	FODO	wiodulated
Diameter	9.78 m	8.95 m
# bends	8	9
cell tune	$v_x, v_y = 90^\circ$	$v_x, v_y = 90^{\circ}$
phase advance	$v_x, v_y = 2, 2$	$v_x, v_y = 2.4, 2.5$
M ₅₆	0.63 m	1.56 m
ϵ_x^{N} in/out	0.5/1.86 µm-rad	0.5/0.72 µm-rad
ϵ_L^N in/out	50/55 keV-psec	50/59 keV-psec

DETAILED ANALYSIS

The excitation-modulated compressor was simulated using elegant [12]. Even with a detailed physics model and a million-particle simulation, emittance growth remained modest, with growth from 0.5 to 1.0 µm-rad. The simulation found significant impact from the interaction of the forward-propagating CSR field with the bunch downstream of the bends ("csrdrift" elements in elegant), the effects of which had not been a part of the initial optimization. This effect increased the final emittance to 1.45 µm-rad. Of greater interest is that the compressor is insensitive to microbunching. Figures 6 and 7 present the output phase space with and without edge effects, and Figure 8 gives emittance evolution through the system; though emittance growth is greater with "csrdrifts", the phase space remains regular and no evidence of the µBI is apparent.

Figure 6: Horizontal phase space without (left) and with (right) CSR edge effects; 10^6 particles.

Figure 7: Longitudinal phase space without (left) and with (right) CSR edge effects; 10⁶ particles

TUPMA034

author(s), title of the work, publisher, and DOI Figure 8: Emittance evolution through line without and with CSR edge effects.

to the A careful analysis of µBI effects confirms this observation [13]; instability gain is extremely low. Figure attribution 9 gives the microbunching gain, and Figure 10 the spectrum, for a compressor of this type operated at 0.75 GeV with a beam of 0.75 µm-rad emittance and 70 pC. GeV with a beam of 0.75 μ m-rad emittance and Initial bunch length was ~4 psec, uncorrelated 1.13x10⁻⁵, and the compression factor was ~53. Initial bunch length was ~ 4 psec, uncorrelated $\delta p/p$ was

Figure 9: Microbunching gain through compressor.

Figure 10: Gain spectrum for modulated compressor.

FUTURE DIRECTIONS

he terms of the CC BY 3.0 licence (© 2015). Any distribution of this work must This discussion is only a demonstration of the method; the example is not fully optimized with regard to distribution of bending, choice of betatron match, edge radiation, FODO cell length, or lattice parameters. Future pui work will invoke such optimization, and will seek to work will invoke such optimization, and will seek to suppress the effects of interaction of the forward-B propagating CSR field with the bunch.

This method can in principle be extended to higher energy and is therefore of use in proposed shortwork i wavelength FEL drivers [14].

CONCLUSIONS

We find that positive compaction $(M_{56}>0)$ compression is an effective and advantageous parametric choice, as it

may avoid both parasitic compressions [15] and microbunching. Optics balance can provide emittance compensation during compression (just as in welldesigned chicane compressors). Wake signatures on longitudinal phase space can be managed in same way as RF curvature and lattice aberrations, by using nonlinear magnetic compensation.

ACKNOWLEDGMENT

The authors are most grateful to Dr. Simone Di Mitri and Dr. Max Cornacchia for useful and supportive discussions on both CSR control and arc compressor design. We note that they have independently developed a meticulously detailed quantitative description of CSR effects in, and an excellent design for, an arc compressor providing effective control of CSR effects [16].

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

REFERENCES

- [1] D. Douglas et al., "Control of Synchrotron Radiation Effects During Recirculation", these proceedings.
- [2] S. Benson et al., "A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions", these proceedings, TUPMA033, IPAC'15, Richmond, VA USA (2015).
- [3] S. Di Mitri et al., Phys. Rev. Lett. 110, 014801, 2 January 2013.
- [4] C.-Y. Tsai et al., "CSR Induced Microbunching Gain Estimation Including Transients in Transport and Recirculation Arcs". these proceedings. MOPMA025, IPAC'15, Richmond, VA USA (2015).
- [5] S. Benson et al., op. cit.
- [6] D. Douglas, "Suppression and Enhancement of CSR-Driven Emittance Degradation in the IR-FEL Driver", JLAB-TN-98-012, 24 March 1998.
- [7] D. Dowell, "Compensation of Bend-Plane Emittance Growth In a 180 Degree Bend", PAC'97, Vancouver, May 1997, p. 1888 (1997); http://www.jacow.org
- [8] S. Di Mitri et al., op. cit.
- [9] *ibid*.
- [10]K.L. Brown and R.V. Servranckx, NIM-A 203, pp.73-9 (1982).
- [11] A. Hofler et al., Phys. Rev. ST Accel. Beams 16, 010101 (2013).
- [12] M. Borland, "elegant: A Flexible SDDS-Compliant Program for Accelerator Simulation," APS Light Source Note LS-287, September 2000.
- [13]C.-Y. Tsai, et al., op. cit.
- [14] R. York, Phys. Rev. ST Accel. Beams 18, 010705 (2014).
- [15] S. Benson et al., op. cit.
- [16] S. Di Mitri and M. Cornacchia, Eur. Phys. Lett., 109, 62002 (2015).

A06 - Free Electron Lasers

er

t from this