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Abstract
The synchrotron radiation will be coherent when the

wavelength of the radiation can be comparedwith the bunch

length. There are two approaches to produce Coherent

Synchrotron Radiation (CSR) on a storage ring. One is

to compress the bunch length, the other one is to produce

a wavy beam which has high spatial repetition along the

longitudinal direction. The latter one can expand the ra-

diation frequency range of a light source. However, CSR

can bring nonlinear effect which brings in extra instabil-

ity. The Liénard-Wiechert potentials in three-dimensional
spacemay have very complicated forms. Themost common

way to investigate CSR is numerical method. This paper try

to use a simple model to obtain energy loss of the electrons

in theory.

PHYSICAL PICTURE

Assuming an electron moves along a fixed circular orbit

of radius ρ with a constant speed |−→β | = β. At the present
moment, the electron locates at point P. We want to know
the fields around point P. Radiation field in the orbit plane
is discussed in [1]. To simplify the question, we assume

the observation point A just above or below the trajectory.
Thus, we get a two dimensional model. The field of point

A is emitted at an earlier time when the electron located at
point P′. The relations between P,P′ and A are as shown
in Fig. 1.
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Figure 1: Diagram of the 2Dmodel. ψ is the retarded angle,
α is the azimuthal angle between P and P′, h is the height
of A relative to the orbit plane. Here h > 0 means the ob-
servation point A is above the orbit plane and α > 0 means
A is ahead of the electron present position P. ψ is always
positive and −π < α < π.
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According to the geometric relationship, we can get the

retarded equation:

ψ2

β2
= (

h
ρ

)2 + 4 sin2(
ψ + α

2
). (1)

The retarded equation is nonlinear, so it is generally not

possible to obtain an exact answer. However, under some

approximations, we can get some meaningful analytic solu-

tions.

SOLUTION OF THE RETARDED
EQUATION

Equation (1) shows that the retarded angle ψ depends on
the electron’s energy γ, the longitudinal azimuthal angle α
and the height between the observation point to the orbit

plane. In other words: from equation (1), we can get the

numerical solution as shown in Fig. 2 and Fig. 3.
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Figure 2: Retarded angle ψ as a function of α. The upper
shows how ψ varies with the whole α when h/ρ = 0.001
for different β( or γ). And the lower shows small α when
β = 0.99 for different h/ρ.

The conclusions are: (a)ψ = α0 when α = −α0, here
α0 = hβ/ρ; (b)ψ is bounded; (c)ψ grows rapidly when
α > 0; (d)ψ is weakly related to γ when γ is large enough;
(e)(ψ + α)/2 < 0 when α < 0 and vice verse.
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Figure 3: (ψ+α)/2 as a function of small α when β = 0.99
for different h/ρ.

Back to the question raised at first, what we really care

about is the field at the observation point close to the elec-

tron position. So α and α0 are small. However, ψ doesn’t
have such restrictions at all.

when ψ � 1.
The following discussion bases on the ultrarelativistic ap-

proximation γ � 1. a ∼ o(b) means that a and b are small
and |a/b| ≈ 0, while a ∼ b means that |a/b| < ∞ and

|b/a | < ∞. Introduce x = ψ+α, x � 1. Then we use padé
approximation to replace cos x. Substituting it into Eq. (1):

0 =
1

12
(γx)4 +

[
1 +

(γα)2 − (γα0)2

12

]
(γx)2

− 2(γ3α)(γx) + (γ2α)2 − (γ2α0)2.
(2)

To obtain this result, x2 � 1 has been used.

In the above equation, if we choose α̃0 = γ
2α0 ∼ 1 and

α̃ = γ3α ∼ 1, then: x̃ = γx ∼ 1. Conversely, if x ∼ 1
γ or

higher order, α0 ∼ o( 1γ ) and α ∼ o( 1
γ2

).
We can prove that by making α = 0 or α0 = 0. Sub-

stituting α = 0 into Eq. (2), then we can get an analytical
solution:

x1 =

√√√√√√√ 12α2
0

( 6
γ2
− α2

0

2
) +

√
( 6
γ2
− α2

0

2
)2 + 12α2

0

(3)

if α0 ∼ 1
γ , x1 ∼ 1 which violates the previous assumption.

Especially when α0 ∼ o( 1
γ2

), x1 = γα0.
Substituting α = 0 into Eq. (2) with the same proce-

dure, the model becomes 1D. And this situation had been

discussed in [2]:

x2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2

γ
(Ω1/3 −Ω−1/3) α > 0

α

2
α < 0

(4)

where:

Ω =
γ3α

2
+

√
1 + (

γ3α

2
)2. (5)

if γ3α � 1, x2 ∼ α 13 . For an ultrarelativistic electron, x2 is
larger than 1

γ .

In the previous case, we can drop α and α0 in Eq. 2, then
we find the solution x = x2. This result means the field is the
same with the point on the trajectory when the observation

point is close enough to the orbit plane.

When α < 0, from Fig 3 we know that x can be very
small. So we drop the x4 term in Eq. (2) around α = −|α0 |.
Then x can be solved:

x3 = γ2α + γ
√
γ2 β2α2 + α2

0
(6)

Here α ∼ α0 ∼ 1
γ2
has been used. x3		α0=0 ≈ α

2
which is

consistent with 1D case and x3		α=0 = γα0 is consistent with
x1.

SINGLE PARTICLE WAKE FIELD
From the Liénard-Wiechert potentials, the electric field

[3] from a moving electron is

−→
E = e

[ −→n − −→β′
γ2(1 − −→n · −→β′)3R2

]
+

e
c

[−→n × {(−→n − −→β′) × −̇→β′}
(1 − −→n · −→β′)3R

]
,

(7)

where R is the distance between the observationpoint and
the radiation emitted location. The tangential component of

the electric field is:

Es =
keβ3

ρ2

[ (u − 1)
γ2ψ2

+ v − u + β2uv
]
, (8)

here

u =
sin(ψ + α)
ψ

, v =
1 − cos(ψ + α)

ψ2
, k =

1

(1 − β2u)3
.

(9)

when α = 0.
At α = 0, Eq. (8) doesn’t contain any singular term. Sub-

stituting expansions of u and v into Eq. (8)

Erad
s =

eγ4 β3

ρ2
( − 2

3
+
1

3
γ2ψ2

)
(10)

when α0 = 0.
This case is discussed in [4] in detail. The forward wake

field is much bigger than the backward wake field.

Erad
s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 4
3

γ4e
ρ2
+
14

3

e
ρ2
γ6x2 α > 0, α � 1

γ3
.

e
8ρ2
+

e
16ρ2

x2 α < 0

(11)

This is consistent with the instantaneous power loss of the

emitting electron from the Larmor formula in the point

charge model [2].
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when α > 0, α ∼ 1
γ3

or α0 ∼ 1
γ2

.

In this situation, αψ ∼ 1
γ2
. Expand u and v at ψ, and Sub-

stitute it into Eq. (8):

Erad
s =

eβ3

ρ2

− 23γ4 + γ2( 2ψ̃
2

15 +
ψ̃4

180 )

(1 + 1
6 β

2ψ̃2)3
+

eβ3

ρ2
α̃

γ2ψ̃3

≈ −2γ
4

3

eβ3

ρ2
1

(1 + 1
6
β2ψ̃2)3

.

(12)

when α > 0,α0 � 1
γ2

and α � 1
γ3

.
The first term in Eq. (8) is singular. It is hard to remove

the singularity. Since the observation is quite close to the

electron, and the radiation field is continuous besides the

present position of the electron. A reasonable assumption

is Erad
s = − 43 eγ4β3

ρ2
.

In remote region, the electric field [4] is expressed as

Erad
s =

2e

(3α)
4
3 ρ2
. (13)

WAKE FIELD OF A WAVY BEAM
Considering a relativistic electron beam which has a

shape of a wiggle in the vertical direction. This beam has a

very high spatial repetition frequency along the closed orbit.

The far-field radiation of such beam is discussed in [5]

The beam distribution in longitudinal-vertical plane can

be described as

−→r (t, τ) = −→r0(t − τ) + y0 sinωyτ
−→e y, (14)

where −→r0(t) is the closed orbit of the reference electron
which usually is a circle. ωy is the spatial repetition fre-

quency, τ is the longitudinal time displacement. If the fre-
quencyωy is really high so that

2πc
ωy ρ

� 1
γ3
, the electrons in

a wavelength will loss the same energy. So CSR doesn’t af-

fect the bunch emittance. However, for an ultra-relativistic

beam, it is very difficult to produce such structure. In the

following discussion, we suppose
y0
ρ ∼ 1

γ , ωy ∼ cγ2

ρ .

We already have the radiation field,

E0 = −4
3

γ4e
ρ2
,

E1 =
eβ3

ρ2

− 23γ4
(1 + 1

6 β
2ψ̃2)3

,

E2 =
2e

(3α)
4
3 ρ2
.

(15)

The distribution of the density is ρ(τ). System of N iden-
tical equidistant charges q moving with constant velocity v

along an arbitrary closed path does not radiate in the limit

of N → ∞ and Nq = const, and the electric and magnetic
fields of the system are the usual static values [4]. If the

electron beam is in steady state, the radiation field satisfies

Es (τ) = Es (τ + 2π
ωy

). So

∫ 2π/ωy

0

Es (τ)dτ = 0. (16)

The longitudinal period of the beam is T = 2π/ωy , then

Erad
s =

∫ τ2

τ0−T
E2ρ(τ)dτ

+

∫ τ1

τ2

E1ρ(τ)dτ +
∫ τ0

τ1

E0ρ(τ)dτ
(17)

Because τ1− τ2 � (τ0− τ1) and E0 has the same order with
E1. Then,

Erad
s =

∫ τ2

τ0−T
E2ρ(τ)dτ +

∫ τ0

τ2

E1ρ(τ)dτ (18)

where τ2 satisfies∫ τ2

τ0−T
E2dτ +

∫ τ0

τ2

E1dτ = 0. (19)

Eqs. (15)(18)(19) together with the retarded Eq. (2) can be

used to calculate the CSR field. Here gives a simple result

in Fig. 4.
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Figure 4: CSR field varies with the longitudinal position of

awavy beam in one period. The longitudinal periodT = 2π
ωy

has the same order with c
γ2ρ
. The vertical amplitude has the

same order with
ρ
γ

.

It shows the energy loss is nonlinear Correlated with the

longitudinal position. Because of the periodicity, the CSR

field in a wider range need more calculation.
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