

DEVELOPMENT OF SIMPLE TRACKING LIBRARIES FOR ALS-U*

H. Nishimura#, D. Robin, K. Song, C. Steier, C. Sun, W. Wan
LBNL, Berkeley, CA 94720, USA

Abstract
A conceptual lattice design study of a new diffraction-

limited light source requires complex and numerically
intensive calculations due to increasing number of fitting
parameters. This paper reports our ongoing effort of
upgrading accelerator modeling and simulation libraries to
carry out such design studies efficiently.

THE TRACY LIBRARIES

Tracy[1] is an accelerator modeling and simulation code
developed as a part of the Advanced Light Source (ALS)
conceptual design study[2] in late 1980’s. The original
version was written in Pascal, and its accelerator library
was extracted and rewritten in C/C++ and later in C#.

The C/C++ version of the library was called Goemon,
which is now Tracy++[3]. One of its applications is the use
with multi-objective genetic algorithms (MOGA)[4] to

optimize the existing ALS lattice[5], and the new lattice for

a diffraction-limited light source called ALS-U[6] by using

OpenMPI[7].

It is not common to use C# for scientific computing yet,
however, the development effort of Tracy was moved to the
C# version called Tracy#[8] a decade ago for better
development efficiency and horizontal integrability than
the C/C++ version but with some performance penalty at
run time.

Taking the design study of ALS-U as an opportunity, the
upgrade of these Tracy libraries have started. Cleaning up
and simplifying the internal structures, they are upgraded
to take benefit of the modern software and hardware
technologies. These new version is called Tracy.Lite that
comes in both C++ and C# versions.

TRACY.LITE

Goals
The goal is to create simpler, faster, and more reliable

and flexible libraries than the Tracy++ and Tracy#
combination. We do this first by limiting our scenario to
the first phase of the conceptual lattice design studies
where lattice errors are not considered but many parameter
optimizations with multiple objectives and also
straightforward scans are required. The modeling of
realistic lattice errors is for the second phase.

Tracy.Lite supports multiple usage modes; a highly-
parallelized batch execution mode for both MOGA and
straightforward scan, and interactive mode using scripts.

Based on our experience with Tracy++ and Tracy#,
Tracy.Lite also has two implementations; Tracy.Lite++ in
C++ and Tracy.Lite# in C#. Tracy.Lite++ is for the use on
the HPC clusters and also on modern many-code CPUs.
Tracy.Lite# is for the development efficiency, flexibility
and the use from Python. By developing these two versions
simltaneously, a better compatibility is established than the
previous case.

Simplification
This is to make both design and implementation simple

and concise to improve maintenance ability, development
efficiency, execution speed and reliability.

The Element class models building blocks of the beam
lines, such as drift spaces, various magnets, monitors and
RF cavities. Tracy++ and Tracy# have the root class
Element and its descendants which form a tree. This
hierarchy has been removed and the single Element class
supports all the Elements by distinguishing the types of
building blocks by using the object attributes. This may
look like a degeneration as a general Object-Oriented
Programming practise, however, it makes external call
from other programming languages, such as Python, much
more transparent and feasible.

The lattice definition was done by using operation
overloading effectively. As Tracy++ required complex
memory management for it, Tracy.Lite++ uses generic
containers as in Tracy# and Tracy.Lite#.

These effects are reflected in the library sizes as shown
below.

Table 1: The Library Code Length in Lines

Library Language Core ALS

Tracy++ C++ 35K 6K

Tracy# C# 22K 11K

Tracy.Lite++ C++ 6K 2K

Tracy.Lite# C# 5K 5K

Core is the body of the library not dedicated to ALS.
ALS is the model of various ALS lattice configurations.

Execution Speed
The speed up comes in the two directions; one is in a

single thread mode by removing the hot spots where CPU

time is wasted by using CPU profiling, and also

simplifying the algorithms that are physically redundant in

the ideal lattice design phase. The second is by multi-

threading; Tracy.Lite++ uses OpenMP[9] and Tracy.Lite#

uses Parallel.For[10] that is similar to OpenMP and a part

of the .NET Framework.

*Work supported by the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231

H_Nishimura@lbl.gov

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI020

MOPWI020
1192

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 - Accelerator/Storage Ring Control Systems

The result bench marking largely depends on a routine
and a type of the CPU therefore we do it with 5 different
CPUs on the Windows OS.

Single-Treaded Case. Table 2 is a case with calculating
the dynamic aperture of the original ALS lattice by using
the transfer matrices in the 5-dim space for 400 turns on
the 1 mm mesh points over +/- 40 mm in X and 0 to 20 mm
in Y. All the calculation were done by using only one CPU
core. There are cases Tracy.Lite# runs slower than Tracy#
that uses tricks for faster speed by sacrificing the thread-
safety.

Table 2: Execution Time on one CPU core [sec]

CPU ++ # Lite++ Lite#

A 2.01 2.88 0.89 2.33

B 4.06 3.76 1.50 3.09

C 1.75 2.45 1.84 3.20

D 4.59 5.28 1.99 5.62

E 1.44 1.56 0.55 1.54

++ means Tracy++, # for Tracy#, Lite for Tracy.Lite.
A: Intel Xeon E5440 2.83 GHz Dual, 8 cores

B: AMS Opetron 6179 2.3 GHz, 8 cores, Hyper-V client
C: Intel Xeon E5-2670 2.6 GHz Dual, 32 cores

D: AMS Athlon 64 X2 3600+ 1.9 GHs, 2 cores

E: Intel Core i5-4440S 2.8 GHz, 4 cores

Multi-Threaded Case. The speed of Tracy.Lite in single
and multi-threaded case are compared in Table 3. This is
for the same dynamic aperture calculation but with the 2nd-
order symplectic integrators in the 5-dim space with 16
segments per quad and bend. A notable observation is that
there are cases of Parallel.For in C# showing better
performance than OpenMP.

Table 3: Execution Time with/without Threading [sec]

CPU ++1 ++N #1 #N

A 8.50 1.75 9.70 2.33

B 12.13 2.84 16.82 4.92

C 8.07 0.78 8.52 0.73

D 14.71 12.12 18.50 10.63

E 6.22 3.02 8.08 3.74

++1: Tracy.Lite++ single-threaded

++N: Tracy.Lte++ nulti-threaded by OpenMP

#1: Tracy.Lite# single-threaded

#N: Tracy.Lite# multi-threaded by Parallel.For
A~E: same as in Table 2.

Multi-Threaded on Intel Xeon Phi. There are modern
CPUs that come with many cores. We have just started
using a PC system with two Intel Xeon Phi boards[11]. The
boards provide total ~120 cores, or ~480 hyper-threads.

Compared with our previous experience of using GPU
for the same type of calculation[12], Phi shows much better

compatibility than GPU with the C++ code on the host PC
because Phi uses Intel-type cores. For local parallel
processing, OpenMP is used with 240 hyper-threads on
each Phi board and CPUs on the host, and OpenMPI among
Phi boards and the host. As of this writing, our Phi system
is being commissioned. Once this port is completed, it can
be scaled out to the lab’s HPC cluster Lawrencium with 8
or more PHI boards.

Accessibility from Python

The .NET languages share the same binary format.
Therefore, IronPython[13], a Python compiler on the .NET,
can use Tracy# and Tracy.Lite# routines directly to provide
interactive environment.

A standard Python can also call external libraries written
in a .NET language without explicitly creating wrappers
but by loading a module called Python for .NET[14].
Therefore, a standard Python can access Tracy# and
Tracy.Lite# routines transparently, too. This includes the
use form the IPython Notebook[15] therefore they can be
used with other Python modules, such as MatPlotLib[16].

On the other hand, C/C++ routines must be explicitly
wrapped in advance for the use from a standard Python. In
case of Tracy++, its wrapper creation was not trivial due to
its complexity, which was much simplified with
Tracy.Lite++.

Platform Portability

Tracy.Lite++ is compatible with Visual C++ and GNU
C++ therefore portable on various operating systems (OS).
Tracy.Lite# run on the .Net Framework including
MONO[17] that coves the Mac OS and most of the major
Linux distributions, in addition to the Windows OS.
However, at this moment, the performance of Tract.Lite#
on non-Windows platform was not tested.

Smooth Switching between 5- and 6-dim spaces

The lattice parameter fitting and tracking routines must
use the same integrator to be consistent. The most of the
fittings use the 4x5 matrix formalism. For example, to
calculate Twiss functions, Tracy uses a routine GetTwiss
that implements the formulas[18] based on the synchrotron
integrals that use transfer matrices in the bending magnets,
and not compatible with the symplectic integrators.
Tracy.Lite calculates matrices dynamically by using the
same symplectic integrators for the use in GetTwiss.
Therefore, the primary fitting routines in the 4x5 matrix
formalism also work with the symplectic integrators in 5-
dim. This makes the switching of integrators in 5-dim
smooth, and the number of kicks per magnet can be
reduced to save the CPU time. This speeds up the energy
aperture calculation that

MOGA in the C# Version

Tracy.Lite# uses the C# routines of the Evolutionally

Optimization[19] for many parameter fittings of multi-

objective optimizations.

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI020

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 - Accelerator/Storage Ring Control Systems

MOPWI020
1193

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Flexible Parameter Scan
A brute force parameter scan complements the results

given by MOGA that returns highly optimized solutions.

By scanning knobs in the vicinity of the region found by

MOGA, we can have the landscape of the parameter space

intuitively.

The number of scan parameters may be over 10 but

unlikely over 20 or 30, therefore the straightforward scan

is reasonably achievable. However, to be practical, the

range and the step size of each parameter must be carefully

chosen and dynamically adjusted. In addition, the order of

the scan parameters may have to be reconfigured at run-

time for effective load balancing on multiple CPU cores.

Tracy.Lite# implements a for-loop as a class with

methods using the recursive calls and the function

delegates effectively. This is being ported to Tracy.Lite++.

CONCLUSION

A new version of the library, Tracy.Lite, brings much

faster and more flexible modeling and simulation

capabilities than the current Tracy++ and Tracy#. Local

parallel processing by using multi-threading fits well in the

library. Local parameter scan in the vicinity of the solution

given by MOGA recovers landscape of the parameter

space intuitively. Interactive uses from Python, especially

from the IPython Notebook, enable design studies with

context by keeping the code and its document together.

ACKNOWLEDGMENT

We applicate T. Kellogg, C. Lam, B. Li and Y. Qin for

their technical discussion and support.

REFERENCES

[1] H. Nishimura, EPAC'88, Rome, Italy, p.803 (1989)

 J. Bengtsson, E. Forest and H. Nishimura, “Tracy
User Manual", unpublished, ALS, LBNL

[2] LBL PUB-5172 Rev. LBL, 1986

 A. Jackson, PAC'93, Washington, D.C, USA, p.1432,
(1993)

[3] H. Nishimura, PAC'01, Chicago, USA, p.3006,
(2001)

[4] L. Yang et. al., Nucl. Instr. and Meth. A 609, 50-57

(2009)

[5] C. Sun, et. al., Phys. Rev. STAB 15, 054001 (2012).

[6] C. Steier, et. al., IPAC 2014, Dresden, Germany, p567

(2014)

[7] http://www.open-mpi.org/

[8] H. Nishimura, ICAP 09, San Francisco, USA, (2009)

 http://accelconf.web.cern.ch/AccelConf/ICAP2009/p

apers/thpsc035.pdf

[9] http://openmp.org/wp/

[10] http://parallelpatterns.codeplex.com/

[11] http://www.intel.com/content/www/us/en/processors

/xeon/xeon-phi-detail.html

[12] H. Nishimura, et. al., PAC ’11, New York, USA,
 p.1764 (2011).

[13] http://ironpython.net/

[14] http://sourceforge.net/projects/pythonnet/files/

PythonNet%20CLR%204.0/

[15] http://ipython.org/notebook.html

[16] http://matplotlib.org/

[17] http://www.mono-project.com/

[18] R.H. Helm et al., PAC’73, San Francisco, USA,
p.900 (1973).

[19] J. McCaffrey, http://visualstudiomagazine.com/

articles/2014/02/01/ evolutionary-optimization-using-

c.aspx

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI020

MOPWI020
1194

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 - Accelerator/Storage Ring Control Systems

