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Abstract 
A conceptual lattice design study of a new diffraction-

limited light source requires complex and numerically 
intensive calculations due to increasing number of fitting 
parameters. This paper reports our ongoing effort of 
upgrading accelerator modeling and simulation libraries to 
carry out such design studies efficiently.  

THE TRACY LIBRARIES 

Tracy[1] is an accelerator modeling and simulation code 
developed as a part of the Advanced Light Source (ALS) 
conceptual design study[2] in late 1980’s. The original 
version was written in Pascal, and its accelerator library 
was extracted and rewritten in C/C++ and later in C#.    

The C/C++ version of the library was called Goemon, 
which is now Tracy++[3]. One of its applications is the use 
with multi-objective genetic algorithms (MOGA)[4] to 

optimize the existing ALS lattice[5], and the new lattice for  

a diffraction-limited light source called ALS-U[6] by using 

OpenMPI[7].  

It is not common to use C# for scientific computing yet, 
however, the development effort of Tracy was moved to the 
C# version called Tracy#[8] a decade ago for better 
development efficiency and horizontal integrability than 
the C/C++ version but with some performance penalty at 
run time. 

Taking the design study of ALS-U as an opportunity, the 
upgrade of these Tracy libraries have started. Cleaning up 
and simplifying the internal structures, they are upgraded 
to take benefit of the modern software and hardware 
technologies. These new version is called Tracy.Lite that 
comes in both C++ and C# versions. 

TRACY.LITE 

Goals 
The goal is to create simpler, faster, and more reliable 

and flexible libraries than the Tracy++ and Tracy# 
combination. We do this first by limiting our scenario to 
the first phase of the conceptual lattice design studies 
where lattice errors are not considered but many parameter 
optimizations with multiple objectives and also 
straightforward scans are required. The modeling of 
realistic lattice errors is for the second phase.  

Tracy.Lite supports multiple usage modes; a highly-
parallelized batch execution mode for both MOGA and 
straightforward scan, and interactive mode using scripts. 

Based on our experience with Tracy++ and Tracy#, 
Tracy.Lite also has two implementations; Tracy.Lite++ in 
C++ and Tracy.Lite# in C#. Tracy.Lite++ is for the use on 
the HPC clusters and also on modern many-code CPUs. 
Tracy.Lite# is for the development efficiency, flexibility 
and the use from Python. By developing these two versions 
simltaneously, a better compatibility is established than the 
previous case. 

Simplification 
This is to make both design and implementation simple 

and concise to improve maintenance ability, development 
efficiency, execution speed and reliability.  

The Element class models building blocks of the beam 
lines, such as drift spaces, various magnets, monitors and 
RF cavities. Tracy++ and Tracy# have the root class 
Element and its descendants which form a tree. This 
hierarchy has been removed and the single Element class 
supports all the Elements by distinguishing the types of 
building blocks by using the object attributes. This may 
look like a degeneration as a general Object-Oriented 
Programming practise, however, it makes external call 
from other programming languages, such as Python, much 
more transparent and feasible. 

The lattice definition was done by using operation 
overloading effectively. As Tracy++ required complex 
memory management for it, Tracy.Lite++ uses generic 
containers as in Tracy# and Tracy.Lite#. 

These effects are reflected in the library sizes as shown 
below. 

Table 1: The Library Code Length in Lines 

Library  Language Core ALS 

Tracy++ C++ 35K 6K 

Tracy# C# 22K 11K 

Tracy.Lite++ C++ 6K 2K 

Tracy.Lite# C# 5K 5K 

Core is the body of the library not dedicated to ALS. 
ALS is the model of various ALS lattice configurations.  

Execution Speed 
The speed up comes in the two directions; one is in a 

single thread mode by removing the hot spots where CPU 

time is wasted by using CPU profiling, and also 

simplifying the algorithms that are physically redundant in 

the ideal lattice design phase. The second is by multi-

threading;  Tracy.Lite++ uses OpenMP[9] and Tracy.Lite#  

uses Parallel.For[10] that is similar to OpenMP and a part 

of the .NET Framework. 

 ___________________________________________  
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The result bench marking largely depends on a routine 
and a type of the CPU therefore we do it with 5 different 
CPUs on the Windows OS.   

Single-Treaded Case. Table 2 is a case with calculating 
the dynamic aperture of the original ALS lattice by using 
the transfer matrices in the 5-dim space for 400 turns on 
the 1 mm mesh points over +/- 40 mm in X and 0 to 20 mm 
in Y. All the calculation were done by using only one CPU 
core. There are cases Tracy.Lite# runs slower than Tracy# 
that uses tricks for faster speed by sacrificing the thread-
safety.  

Table 2: Execution Time on one CPU core [sec] 

CPU ++ # Lite++ Lite# 

A 2.01 2.88 0.89 2.33 

B 4.06 3.76 1.50 3.09 

C 1.75 2.45 1.84 3.20 

D 4.59 5.28 1.99 5.62 

E 1.44 1.56 0.55 1.54 

++ means Tracy++, # for Tracy#, Lite for Tracy.Lite.  
A: Intel Xeon E5440 2.83 GHz Dual, 8 cores 

B: AMS Opetron 6179 2.3 GHz, 8 cores, Hyper-V client 
C: Intel Xeon E5-2670 2.6 GHz Dual, 32 cores 

D: AMS Athlon 64 X2 3600+ 1.9 GHs, 2 cores 

E: Intel Core i5-4440S 2.8 GHz, 4 cores 

 

Multi-Threaded Case. The speed of Tracy.Lite in single 
and multi-threaded case are compared in Table 3. This is 
for the same dynamic aperture calculation but with the 2nd-
order symplectic integrators in the 5-dim space with 16 
segments per quad and bend. A notable observation is that 
there are cases of Parallel.For in C# showing better 
performance than OpenMP.  

Table 3: Execution Time with/without Threading [sec] 

CPU ++1 ++N #1 #N 

A 8.50 1.75 9.70 2.33 

B 12.13 2.84 16.82 4.92 

C 8.07 0.78 8.52 0.73 

D 14.71 12.12 18.50 10.63 

E 6.22 3.02 8.08 3.74 

++1: Tracy.Lite++ single-threaded 

++N: Tracy.Lte++ nulti-threaded by OpenMP 

#1: Tracy.Lite# single-threaded 

#N: Tracy.Lite# multi-threaded by Parallel.For 
A~E: same as in Table 2. 
 

Multi-Threaded on Intel Xeon Phi. There are modern 
CPUs that come with many cores. We have just started 
using a PC system with two Intel Xeon Phi boards[11]. The 
boards provide total ~120 cores, or ~480 hyper-threads. 

Compared with our previous experience of using GPU 
for the same type of calculation[12], Phi shows much better 

compatibility than GPU with the C++ code on the host PC 
because Phi uses Intel-type cores. For local parallel 
processing, OpenMP is used with 240 hyper-threads on 
each Phi board and CPUs on the host, and OpenMPI among 
Phi boards and the host. As of this writing, our Phi system 
is being commissioned. Once this port is completed, it can 
be scaled out to the lab’s HPC cluster Lawrencium with 8 
or more PHI boards. 

Accessibility from Python 

The .NET languages share the same binary format. 
Therefore, IronPython[13], a Python compiler on the .NET, 
can use Tracy# and Tracy.Lite# routines directly to provide 
interactive environment. 

A standard Python can also call external libraries written 
in a .NET language without explicitly creating wrappers 
but by loading a module called Python for .NET[14]. 
Therefore, a standard Python can access Tracy# and 
Tracy.Lite# routines transparently, too. This includes the 
use form the IPython Notebook[15] therefore they can be 
used with other Python modules, such as MatPlotLib[16].  

On the other hand, C/C++ routines must be explicitly 
wrapped in advance for the use from a standard Python. In 
case of Tracy++, its wrapper creation was not trivial due to 
its complexity, which was much simplified with 
Tracy.Lite++. 

Platform Portability 

Tracy.Lite++ is compatible with Visual C++ and GNU 
C++ therefore portable on various operating systems (OS). 
Tracy.Lite# run on the .Net Framework including 
MONO[17] that coves the Mac OS and most of the major 
Linux distributions, in addition to the Windows OS. 
However, at this moment, the performance of Tract.Lite# 
on non-Windows platform was not tested. 

Smooth Switching between 5- and 6-dim spaces 

The lattice parameter fitting and tracking routines must 
use the same integrator to be consistent. The most of the 
fittings use the 4x5 matrix formalism. For example, to 
calculate Twiss functions, Tracy uses a routine GetTwiss 
that implements the formulas[18] based on the synchrotron 
integrals that use transfer matrices in the bending magnets, 
and not compatible with the symplectic integrators. 
Tracy.Lite calculates matrices dynamically by using the 
same symplectic integrators for the use in GetTwiss. 
Therefore, the primary fitting routines in the 4x5 matrix 
formalism also work with the symplectic integrators in 5-
dim. This makes the switching of integrators in 5-dim 
smooth, and the number of kicks per magnet can be 
reduced to save the CPU time. This speeds up the energy 
aperture calculation that  

MOGA in the C# Version 

Tracy.Lite# uses the C# routines of the Evolutionally 

Optimization[19] for many parameter fittings of multi-

objective optimizations. 
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Flexible Parameter Scan 
A brute force parameter scan complements the results 

given by MOGA that returns highly optimized solutions.  

By scanning knobs in the vicinity of the region found by 

MOGA, we can have the landscape of the parameter space 

intuitively.  

The number of scan parameters may be over 10 but 

unlikely over 20 or 30, therefore the straightforward scan 

is reasonably achievable. However, to be practical, the 

range and the step size of each parameter must be carefully 

chosen and dynamically adjusted. In addition, the order of 

the scan parameters may have to be reconfigured at run-

time for effective load balancing on multiple CPU cores.  

Tracy.Lite# implements a for-loop as a class with 

methods using the recursive calls and the function 

delegates effectively. This is being ported to Tracy.Lite++. 

CONCLUSION 

A new version of the library, Tracy.Lite, brings much 

faster and more flexible modeling and simulation 

capabilities than the current Tracy++ and Tracy#. Local 

parallel processing by using multi-threading fits well in the 

library. Local parameter scan in the vicinity of the solution 

given by MOGA recovers landscape of the parameter 

space intuitively. Interactive uses from Python, especially 

from the IPython Notebook, enable design studies with 

context by keeping the code and its document together.  
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