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Abstract

The Versatile Electron Linear Accelerator (VELA) is a

facility designed to provide a high quality electron beam

for accelerator systems development, as well as industrial

and scientific applications. Currently, the RF gun can de-

liver short (of order a few ps) bunches with charge in excess

of 250 pC at up to 5.0 MeV/c beam momentum. Measure-

ment of the beam emittance and optics in the section im-

mediately following the gun is a key step in tuning both

the gun and the downstream beamlines for optimum beam

quality. We report the results of measurements (taking ac-

count of coupling and space charge) indicating normalised

emittances of order 0.5µm at low bunch charge.

INTRODUCTION: VELA LAYOUT

The injection beamline of VELA [1] (Fig. 1) comprises

a 2.5 cell S-band photocathode gun with copper photocath-

ode. The gun is driven with the third harmonic of a short

(<76 fs rms) pulsed Ti:Sapphire laser with a typical pulse

energy of 1 mJ. The size of the laser spot on the photocath-

ode is typically below 0.5 mm. The gun is immersed in the

magnetic field of a main gun solenoid which provides emit-

tance compensation and focusing of the beam in the initial

section of the injection line. A bucking coil located beside

the gun zeroes the field on the photocathode. Further fo-

cusing is provided by four quadrupole magnets, each with

a length of 0.1 m. These magnets are also used in the pro-

cedure for emittance measurement. Beam diagnostics in-

clude a wall current monitor for charge measurement, and

three combined diagnostic stations containing YAG screens

installed at 45◦ to the beam line. The emittance measure-

ments presented in this paper are based on beam images

observed on the YAG screens with high-sensitivity, high-

resolution CCD cameras. Vertical and horizontal slits on

YAG-02 and YAG-03 allow alternative methods for emit-

tance characterization. A Transverse Deflecting Cavity

(TDC) which is presently under commissioning will com-

plete the diagnostic suite for 6D beam characterisation.

EMITTANCE AND OPTICS

MEASUREMENTS WITH COUPLING

In general, the solenoid fields around the VELA gun (and

especially any uncompensated magnetic field on the pho-

tocathode) will introduce coupling in the beam. Further-
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Figure 1: Layout of the VELA injection line.

more, space charge effects are expected to be significant,

or even dominant, in many parameter regimes of interest

for VELA. The techniques used for emittance and optics

measurements therefore need to take into account both cou-

pling and space charge. For the present, we assume that at

low bunch charge (of order 10 pC) it is possible to include

transverse space charge effects in a linear approximation:

this will be discussed in more detail later.

Our goal is to determine the transverse emittances and

Courant–Snyder parameters for the beam in the section of

the VELA beam line immediately following the gun. Lon-

gitudinal effects will play some role, especially in the pres-

ence of space charge, and we plan to include the longi-

tudinal dynamics in future work. For now, we assume

that the relevant beam properties can be described by the

4× 4 transverse covariance matrix Σ with elements Σij =
〈xixj〉, where xi is an element of the phase-space vector

~x = (x, px, y, py) for a single particle, and the brackets 〈·〉
indicate an average over all particles in the bunch. x and

y are respectively the horizontal and vertical co-ordinates

of a particle, and px and py the horizontal and vertical mo-

menta scaled by a reference momentum P0 (= 4.5 MeV/c

in the present case). The eigenemittances are constant for

a given beam under linear symplectic transport, and can be

obtained from the covariance matrix Σ using the fact that

the eigenvalues of ΣS are ±iεI and ±iεII, where S is the

4× 4 antisymmetric matrix with block diagonals:

S2 =

(

0 1
−1 0

)

, (1)

and εI, εII are the eigenemittances [2]. The Courant–

Snyder parameters can be obtained from the eigenvectors

of ΣS. To determine the eigenemittances and Courant–

Snyder parameters at a given point in the beamline, we

therefore need to determine the elements of the covariance

matrix Σ at that point in the beamline. This can be done

using quadrupole scans, as follows.
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Consider two points in the beamline: s0 (the reconstruc-

tion point) where we wish to determine the elements of

Σ, and s1 (the observation point) where there is a screen

allowing us to observe the transverse distribution of the

beam in co-ordinate space. We assume that it is possible to

change the transfer matrix R(s1, s0) from s0 to s1, for ex-

ample by changing the strengths of one or more quadrupole

magnets between s0 and s1. For a given transfer matrix

R = R(s1, s0), the covariance matrices Σ(s1) and Σ(s0)
at s0 and s1 respectively, are related by:

Σ(s1) = RΣ(s0)R
T, (2)

where RT is the transpose of R. Hence, we can write:

u(s1) = Cv(s0), (3)

where u(s1) is a (column) vector with components

(〈x2〉, 〈xy〉, 〈y2〉) at s1, C is a 3 × 10 matrix constructed

from combinations of the elements of the transfer matrix

R, and v(s0) is a (column) vector with 10 components cor-

responding to the independent elements of the (symmetric)

matrix Σ(s0). We do not give explicit expressions for the

elements of C in this paper because of space constraints;

but it is not difficult to construct the required expressions.

The elements of the matrix u(s1) can be obtained from

the images on the screen at the observation point, s1. Sup-

pose that we make N observations corresponding to N dif-

ferent transfer matrices R(s1, s0) (for example, with N dif-

ferent strengths of a given quadrupole between s0 and s1).

We can assemble the observed beam distributions into a

single vector u(s1) with 3N components, and at the same

time extend the matrix C (using the corresponding transfer

matrices) into a 3N × 10 matrix. The vector v(s0), how-

ever, remains unchanged since the covariance matrix at s0
is unaffected by beamline components between s0 and s1.

Finally, we can invert Eq. (3) to obtain v(s0) in terms of

the inverse of the known matrix C, and the known vector

u(s1). The vector v(s0) contains all the elements of the co-

variance matrix Σ(s0) at the reconstruction point: we can

then obtain the eigenemittances and Courant–Snyder func-

tions from the eigenvalues and eigenvectors of Σ(s0)S as

described above.

This technique is based on a well-known procedure for

measuring the emittance in one degree of freedom (see,

for example [3]), but extended to take account of coupling.

Space charge effects are a little more difficult, since even in

a linear approximation the effects depend on the beam size,

which is not known a priori, but is determined as a result

of the analysis. Space charge is discussed in the following

section; but first, we complete the present section by con-

sidering some specific requirements for the measurements.

In the simplest case, we can consider a single quadrupole

between s0 and s1: then, in the thin-lens approximation,

the quantities 〈x2〉, 〈xy〉 and 〈y2〉 vary quadratically with

the focusing strength k1L of the quadrupole. Fitting a

parabola to a curve of 〈x2〉 vs k1L yields three parame-

ters, which are related to the elements of the covariance

matrix Σ(s0). From the curves of 〈xy〉 and 〈y2〉 vs k1L
we obtain a further six parameters, hence nine parameters

in total. However, the 4 × 4 symmetric covariance matrix

Σ(s0) has ten independent elements: therefore, by scan-

ning a single quadrupole, we lack sufficient constraints to

determine uniquely the elements of Σ(s0). In the analysis

procedure described above, this will be evident by one of

the singular values of C being vanishingly small. However,

by scanning two quadrupoles we obtain six parabolas and

18 constraints: the fitting of Σ(s0) to the data then becomes

over-constrained, which allows any discrepancy between

the model and the data to be assessed from the quality of

the fit to the measurements. Scanning three quadrupoles

provides 27 constraints, which over-constrains the fit even

more strongly.

SPACE CHARGE EFFECTS

The evolution of the transverse beam size in a DC beam

in the presence of space charge (and neglecting coupling)

is described by the envelope equation:

d2σx

ds2
+ k1σx −

εx
σ3
x

−
K

2(σx + σy)
= 0, (4)

where σx =
√

〈x2〉 is the rms beam size, k1 is the lo-

cal focusing strength (e.g. from quadrupole magnets), εx is

the horizontal emittance, and K = 2I/β3γ3Ic is the per-

veance. Here, I is the beam current, β and γ the scaled

velocity and relativistic factor for particles in the beam,

and Ic the critical current (or Alfvén current ≈17.045 kA

in the case of an electron beam). The evolution of the ver-

tical beam size is described by a similar equation. For a

beam with a Kapchinsky–Vladimirsky (KV) distribution,

the envelope equation (4) gives an exact description of the

beam size evolution (with constant emittance). For non-

KV distributions, the emittance is no longer constant, but

the envelope equation is still, in many cases, a good ap-

proximation for the beam behaviour. For bunched beams,

the situation is even more complicated since the current is

a function of longitudinal position within the bunch, and

hence the space charge forces will also vary with longitu-

dinal position. Nevertheless, we may assume that if space

charge forces are not too strong (i.e. the bunch charge is

not too large) then the evolution of the beam size can be

approximated by the envelope equation with some “aver-

age” value K̄ for the perveance. Space charge forces may

then be taken into account in the analysis described in the

previous section (for measurement of the beam covariance

matrix) by including a linear defocusing term:

k1,sc = −
K̄

2σx(σx + σy)
(5)

at each point along the beamline for the horizontal motion,

and a similar (also defocusing) term for the vertical mo-

tion. The difficulty is that the beam sizes σx and σy are

not known at each point along the beamline from s0 to s1.
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Figure 2: Typical measurements of beam size vs

quadrupole strength for three quadrupoles on VELA.

However, we can make reasonable initial estimates based

on the beam sizes observed at s1 (and at s0, if we choose

a reconstruction point where it is possible to insert a YAG

screen); the estimates can be improved based on analysis

of the quadrupole scan measurements. The covariance ma-

trix Σ(s0) can then be determined by an iterative proce-

dure, where the goal is to find a beam distribution consis-

tent with the beam sizes assumed in calculating the space

charge forces.

EMITTANCE MEASUREMENT RESULTS

Data were collected on VELA from separate scans of

three quadrupoles between YAG-01 and YAG-03, with

10 pC bunch charge and 4.5 MeV/c momentum. Although

it was not possible to measure the bunch length, it is ex-

pected that in this regime space charge effects are signifi-

cant, but not dominant (the space-charge term in the enve-

lope equation is comparable in size to the emittance term).

Results of the analysis (including space charge) are

shown in Fig. 2. The data points are obtained by fitting

2D Gaussian functions to the image intensity observed on

YAG-03. Error bars represent the standard deviation over

10 machine pulses. The fitting procedure represented by

inverting Eq. (3) is modified to give increased weight to

points with smaller error bars; the errors can be propagated

to give error estimates on the emittances. Given that the fit

is highly over-constrained, there is reasonably good agree-

ment between the data points and the results of the fits (rep-

resented by continuous lines in Fig. 2).

Figure 3 shows the measured eigenemittances for differ-

ent currents in the bucking coil. Although there is some de-

viation from the theoretical behaviour (shown by the solid
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Figure 3: Variation of eigenemittances with bucking coil

current on VELA.

curves in Fig. 3) at larger values of the current, there is rea-

sonable qualitative agreement between measurement and

theory. In particular, the product of the eigenemittances is

roughly constant, with the values approaching each other

most closely at a current in the bucking coil of -2 A, when

the solenoid field on the cathode is expected to be zero. It

should be noted that the theoretical expectation for the be-

haviour of the eigenemittances is based on a highly simpli-

fied model [4] that assumes (for example) constant particle

energy from the cathode (i.e. neglecting acceleration within

the gun), and ignores space charge effects.

Finally, by choosing a reconstruction point at a location

in the beamline where a YAG screen can be inserted, we

can validate the results of the quadrupole scan analysis by

comparing the reconstructed beam sizes with the directly

observed values. We find that although the beam sizes show

the same trend with bucking coil current, the reconstructed

values are systematically smaller than the directly observed

values by about 10%. This could be for a variety of rea-

sons, including nonlinear (or longitudinal) space charge ef-

fects, or systematic errors in quadrupole or screen image

calibration. Nevertheless, we feel that the level of agree-

ment at this stage provides some support for the validity of

the analysis technique that we have developed.

CONCLUSIONS AND FURTHER WORK

Using an analysis technique that includes the effects

of coupling and (in a simple linear approximation) space

charge, quadrupole scan measurements on VELA show

normalised eigenemittances of order 0.5µm at 10 pC bunch

charge. The eigenemittances vary with the bucking coil

current in a way that is broadly in line with expectations

from a simplified theoretical model. There remains some

discrepancy between the observed beam sizes and the beam

sizes expected from the results of the quadrupole scan anal-

ysis. We plan to carry out a more thorough investigation of

systematic errors, and will also study the impact of non-

linear and longitudinal effects of space charge, including

measurements at higher bunch charge.
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