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Abstract

Emittance growth and beam loss in high intensity circular

proton accelerators are one of the most serious issue which

limit their performance. The emittance growth is caused by

linear and nonlinear resonances of betatron/synchrotron os-

cillation due to lattice and space charge nonlinear force. The

resonances are induced by errors in many cases. The space

charge effects have been studied by computer simulations.

Simulations with taking into account errors at random are

consuming. We should first understand which resonances

are serious. Resonance strength and resonance width in-

duced by space charge and lattice nonlinearity is discussed

with integrals along a ring like the radiation integrals. Emit-

tance growth is evaluated by model with the resonance width

to understand the mechanism.

INTRODUCTION

Particles move with experience of electro-magnetic field

of lattice elements and space charge. We study slow emit-

tance growth arising in a high intensity circular proton ring.

We assume that the beam distribution is quasi-static, and

each particle moves in the filed of the quasi-static distribu-

tion. Actually we concern about beam loss of 0.1-1% during

a long term (≈ 10,000 turns) in J-PARC MR. A halo is

formed by the nonlinear force due to the electro-magnetic

field. The halo, which consists of small part of whole beam,

does not affect potential. Particle motion is described by

a single particle Hamiltonian in the averaged field. This

picture is not self-consistent for a distortion of beam distri-

bution due to space charge force. Hamiltonian is separated

by three parts for (1) linear betatron/synchrotron motion

(µJ) (2) nonlinear component of the lattice magnets (Unl )

and (3) space charge potential (U).

H = µJ + Unl + Usc . (1)

where Hamiltonian is represented by action variables J and

φ, which are Courant-Snyder invariant (W = 2J) and beta-

tron phase, respectively.

Hamiltonian is expanded by Fourier series,

H = µJ+U00(J )+
∑

mx,my,0

Umx,my
(J) exp(−imxφx−imyφy )

(2)

where Phase space structure near resonances are charac-

terized by the resonance width. It is determined by their

strength and tune slope for amplitude as follows [1],

∆Jx = 2

√

Umx,my

Λ
Λ =

∂2U00

∂J2
x

. (3)

EVALUATION OF RESONANCE WIDTH

Resonances Due to Space Charge Force
We first discuss the space charge potential Usc [2]. Beam

distribution is assumed to be Gaussian in transverse de-

termined by emittance and Twiss parameters. U contains

linear component, which gives a tune shift and Twiss pa-

rameter distortion. Twiss distortion is given by solving an

envelope equation including linear space charge force self-

consistently.

Usc =

∫

ds
′
Usc (s

′) =
λprp

β2γ3

∮

ds
′ (4)

∫

∞

0

1 − exp

(

−
βx (s′)X (s,x′)

2σ2
x+u

−
βy (s′)Y (s,s′)

2σ2
y+u

)

√

2σ2
x + u

√

2σ2
x + u

du

X and Y are normalized betatron coordinates at s′ as

X (s, s′) =

√

2Jx cos(ϕx (s
′) + φx (s))

Y (s, s′) =

√

2Jy cos(ϕy (s
′) + φy (s)). (5)

where ϕx,y (s′) is the betatron phase difference between s

and s′.

The Fourier component, which correspond to resonance

strength, is given by

Umx,my
(Jx , Jy ) =

λprp

β2γ3

∮

ds

∫

∞

0

du

√

2σ2
x + u

√

2σ2
y + u

[

δmx0δmy0 − exp(wx − wy )(−1)(mx+xy )/2

Imx /2(wx )Imy /2(wy )e
−imxϕx−imyϕy

]

. (6)

The tune slope ∂2U00/∂J2
x in Eq.(3) induced by space

charge potential is obtained as follows. The tune slope is

evaluated by U00(Jx , Jy ) in Eq.(7).

U00(Jx , Jy ) =
λprp

β2γ3

∮

ds

∫

∞

0

dη
√

2 + η
√

2ryx + η

(1 − e
−wx−wy I0(wx )I0(wy )). (7)

where ryx = σ
2
y/σ

2
x and

wx =
βx Jx/σ

2
x

2 + η
. wy =

βy Jy/σ
2
y

2 + η/ryx
. (8)

∂

∂Jx
=

βx/σ
2
x

2 + η

∂

∂wx

.
∂

∂Jy
=

βy/σ
2
x

2ryx + η

∂

∂wy

. (9)
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The tune shift is given by derivative of U00 for Jxy as

follows,

2π∆νx = −
∂U00

∂Jx

= −

λprp

β2γ3

∮

ds
βx

σ2
x

∫

∞

0

e−wx−wy dη

(2 + η)3/2(2ryx + η)1/2

[

(I0(wx ) − I1(wx ))I0(wy )
]

, (10)

Similar formula is given for 2π∆νy .

The tune slope is given by second derivative of U0 as

follows,

∂2U00

∂J2
x

= −2π
∂νx

∂Jx
(11)

=

λprp

β2γ3

∮

ds
β2
x

σ4
x

∫

∞

0

e−wx−wy dη

(2 + η)5/2(2ryx + η)1/2

[{

3

2
I0(wx ) − 2I1(wx ) +

1

2
I2(wx )

}

I0(wy )

]

,

where I0(x)′ = I1(x), I0(x)′′ = (I0(x) + I2(x))/2 are

used. Similar formulae are given for ∂2U0/∂Jx/∂Jy and

∂2U0/∂J2
y .

Figure 1 shows tune spread (∆νx,y (Jx , Jy )), slope

(∂2U0/∂J2
x), 4-th order resonance strength (U4,0) and its

width due to space charge force for J-PARC MR. The reso-

nance width is visible size, 0.2ε, when JR = ε.
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Figure 1: Tune spread (∆νx,y (Jx , Jy )), slope (∂2U0/∂x2),

4-th order resonance strength (U4,0) and its width due to

space charge force as function of JR .

Resonances Due to Nonlinear Magnets
Resonances and tune spread/slope are also induced by

nonlinear magnets. One turn map is expanded by 12-th order

polynomials for J-PARC MR. Taking at phase independent

term, U00 is obtained as

.

(12)

.
Table 1: Umx,my

(J) for lattice nonlinearity. U’s are eval-

uated at J 3rd and 4-th column. The suffix, B0,B and BR

means lattices without errors, lattice with measured beta and

measured beta and coupling [3].

Figure 2 shows the tune shift and slope. Typical tune slope is

∂2U00/∂x2
= 1000 ∼ 3000. This value is similar for Usc,00

at Jx = 32ε, namely tune slope of space charge is dominant

for that of lattice nonlinearity at J < 9ε(3σ), vice versa.

Resonance strength due to lattice nonlinearity is obtained

by the one turn map. Table 1 shows the resonance strength

Umx,my
(J). up to 4-th.

Figure 2: Tune spread, ∂2U00/∂x2 induced by lattice nonlin-

earity.
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TOY MODEL WITH THE TUNE SLOPE

AND RESONANCE STRENGTH

We study emittance growth for an accelerator model with a

given tune slope and resonance strength. This is an example

of Hamiltonian,

H = µ0 J +

(

J +
e−2aJ

2a

)

+ bJ cos mφ. (13)

The tune shift is given by

µ =
∂H

∂J
= µ0 + (1 − e

−2aJ ). (14)

For small amplitude tune shift 2aJ, where a > 0. The tune

slope is given by

∂2H

∂J2
= 2ae

−2aJ . (15)

Half width of the resonance is expressed by

∆J =

√

2bJR

ae−2aJR
. (16)

Symplectic integration is performed by H (J, φ) as follows,

Jn+1 =

Jn

1 − bm sin mφn
(17)

φn+1 = φn + µ + (e−2aJn+1
− 1) + b cos mφn ,

where Jn and φn are those of n-th turn.

We study two cases of parameters,

• a = 0.5, b = 0.002, m = 4, µ = 2π × 0.203

• a = 0.5, b = 0.0002, m = 4, µ = 2π × 0.203

The resonance widths are given as (1) ∆J = 0.07 and (2)

=0.02. The betatron amplitude, where the resonance hits, is

JR = 0.38.

The model is tracked using the two sets of parameters.

Figure 3 shows phase space trajectories. 4-the order reso-

nance is seen, and their position (JR) and widths agree with

the formula, Eqs.(14) and (16)

Figure 3: Phase space trajectory for the model map, Eq.(17).

Left and right plots correspond to parameters (1) and (2),

respectively.

Tune spread area modulates due to synchrotron oscillation.

To study the effect, the strength of tune shift term a is made

a modulation as

a =
a0

2
(1 + cos 2πνsn). (18)

The resonant amplitude move to larger amplitude for small

a. The model does not match to space charge force in this

point. This model should be improved in the future. Figure

4 shows phase space plot taking into account of the effective

synchrotron motion. Chaotic area drastically increases due

to the synchrotron motion. Figure 5 shows the emittance

growth of the model with Eqs.(17) and (18). We can see the

emittance growth depending on the resonance width.

Figure 4: Phase space trajectory for the model map taking

into account of effective synchrotron motion, Eqs.(17) and

(18). Left and right plots correspond to parameters (1) and

(2), respectively.
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Figure 5: Emittance growth of the model with Eqs.(17) and

(18).

SUMMARY

Tune slope and resonance strength induced by lattice and

space charge nonlinear force were evaluated by integrals

along ring. The resonance width which characterize emit-

tance growth is estimated by them. A simple model with

the resonance information is examined to study emittance

growth. Synchrotron motion is taken into account of chang-

ing space charge tune shift for z. Enhancement of the emit-

tance growth was evaluated.
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