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Abstract
OCELOT has been developed as a multiphysics simula-

tion tool for FEL and synchrotron light source studies. In
this work we highlight recent code developments focusing
on electron tracking in linacs taking into account collective
effects and on x-ray optics calculations.

INTRODUCTION
OCELOT has been developed as a multiphysics python-

based simulation and on-line control framework for free
electron laser (FEL) and synchrotron light source studies.
Overview of its design and application areas can be found
e.g. in [1]. FEL simulations comprise electron beam dynam-
ics, FEL process proper, and interaction of radiation with
optics components. OCELOT is a framework to account for
all such processes, by including native physics models or
interfacing to third-party codes. FEL calculations heavily
rely on Genesis 1.3 [2], while for other physics processes
native models of various complexity exist. In this work we
focus on recent code developments in two application areas
not discussed in [1]: electron beam dynamics with space
charge effects and x-ray optics. Accounting for space charge
effects is necessary to extend the application area to low
energy electron transport. The other major physics process
which has to be taken into account for electron beam dy-
namics in FELs is Coherent Synchrotron radiation (CSR).
A corresponding solver for OCELOT is being introduced
and will be discussed elsewhere. The x-ray optics module
has been largely driven by the needs of self-seeded FEL
and some crystal optics simulations. This paper discusses
calculations of crystal reflectivity and transmissivity in the
optics module. Ray tracing and Fourier optics methods have
also been introduced but are not discussed here.

SPACE CHARGE EFFECTS
OCELOT has been recently extended for particle track-

ing with collective effects. A three-dimensional Poisson
solver to take into account the space charge forces has been
included. In the near future additional modules for coherent
synchrotron radiation and wakefields will be included in the
code as well. The tracking of particles is done in the same
way as, for example, in Elegant [3]. Quadrupoles, dipoles,
sextupoles, radiofrequency (RF) cavities and so on are mod-
elled by linear or nonlinear maps. The focusing effect of RF
cavities is taken into account according to [4]. The space
charge forces are calculated by solving the Poisson equation
in the bunch frame. Then the Lorentz transformed electro-
magnetic field is applied as a kick in the laboratory frame.
∗ ilya.agapov@xfel.eu

Figure 1: FLASH1 layout.

For the solution of the Poisson equation we use an integral
representation of the electrostatic potential by convolution
of the free-space Green’s function with the charge distribu-
tion. The convolution equation is solved with the help of
the Fast Fourier Transform (FFT). The same algorithm for
solution of the 3D Poisson equation is used, for example,
in ASTRA [5]. However, ASTRA solves equations of mo-
tion directly with a Runge-Kutta method, while in OCELOT
particles are tracked using maps.

In this Section beam dynamics simulations for FLASH [6]
using OCELOT are presented. FLASH is a high-gain FEL
operating in the wavelength range of 4.2 - 45 nm. The layout
of the facility is shown in Fig. 1. The formation of the
electron bunch is carried out in two bunch compressors and
seven TESLA-type 1.3 GHz superconducting accelerator
modules. Each 12 m long module contains eight cavities.
A special superconducting 3.9 GHz module built at FNAL
has been installed in 2010 to improve the quality of the
accelerated electron beam. The initial low-energetic part
( 14 meters from cathode of the gun) of the facility up to the
third harmonic module was simulated with ASTRA since
gun simulation is not presently possible in OCELOT. Then
OCELOT was used to track the beam up to the entrance of
the undulator section (203 meters from the cathode). The
beam was tracked with and without taking space charge into
account. The impact of space charge on the beam optics is
shown in Fig. 2, where beta functions in the vertical plane
without space charge (gray solid line) and with space charge
(black points) are compared. A considerable mismatch is
seen, which of course can be corrected. Such correction is
not shown here since the focus is on benchmarking OCELOT
with ASTRA.

The results of simulating the same setup with ASTRA is
shown in Fig. 3. A slight disagreement between the two
simulations is related to the fact that only first order maps
were used for quadrupoles in OCELOT (higher order maps
are presently used only for sextupoles and octupoles). This is
also confirmed by cross-checks with Elegant. Higher order
corrections to quadrupole and bending magnet maps are
now being introduced in OCELOT as well. The current
profile at the undulator entrance is shown in Fig. 4, where
results obtained with OCELOT and ASTRA are compared.
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Figure 2: Vertical beta function with space charge (black
points) and without (grey solid line) as obtained with
OCELOT.

Figure 3: Vertical beta function with space charge (black
points) and without (grey solid line) as obtained with AS-
TRA.

The difference is again due to using only linear optics in
quadrupoles in OCELOT. The run time for OCELOT is
significantly shorter than for ASTRA (fewminutes compared
to few hours on a PC).

X-RAY OPTICS MODULE
The optics module of OCELOT now includes the possi-

bility of calculating reflectivity and transmissivity of perfect
symmetric- or asymmetric-cut crystals using the dynami-

Figure 4: The current profile at the undulator entrance as
obtained with ASTRA (solid black) and with OCELOT (grey
dashed).

Figure 5: Sketch of (a) Bragg and (b) Laue scattering geom-
etry.

cal theory of x-ray diffraction (see [7] for an authoritative
textbook) in the two-beam case.

The dynamical theory solves the problem of a monochro-
matic plane wave in a crystal. For such medium, the dielec-
tric susceptibility can be expanded in Fourier series, due to
the spatial periodicity of the electron density in the crystal,
yielding

χ(~r) =
∑
~h

χh exp[−i~h · ~r] , (1)

with

χh = −
reλ2Fh

πVc
, (2)

where λ is the wavelength of interest, Vc the unit cell volume,
re the classical electron radius and Fh the structure factor.

If one considers only the incident beam and one diffracted
wave in the crystal, neglecting all other terms in the Fourier
series, one remains with two beams. In this case, all possi-
ble wave vectors in the crystal are determined by two hyper-
boloid sheets in the reciprocal space. Boundary conditions
for the electromagnetic field select the points on these sheets
corresponding to the actual wave vectors in the crystals, and
allow one to find transmissivity and reflectivity. Here we will
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limit ourselves to describing the treatment implemented in
OCELOT, without going into details concerning the theory
of diffraction.
With reference to Fig.5, showing two generic examples

for Bragg and Laue geometries, and following notation and
conventions in [7] we indicate with ~n the unit vector normal
to the crystal surface, directed inside the crystal, while the
trace of the Bragg planes is indicated with the unit vector ~s.
The directions of incident and diffracted beams are specified,
respectively, by the unit vectors ~s0, and ~sh . We call ψn the
angle between ~n and ~s, ψ0 the angle between ~n and ~s0, and
ψh the angle between ~n and ~sh . The signs of these angles are
such that the Bragg angle θB between ~s and ~s0 is positive.
We further define

γ0 = cosψ0 , γh = cosψh , γ =
γh
γ0

(3)

so that γ < 0 in the case of Bragg scattering geometry, Fig.
5(a) and γ > 0 in the Laue scattering geometry, Fig. 5(b).
We now set

PL =
λ
√
γ0 |γh |

|Cp |
√
χh χ̄h

(4)

MP
′
=

χ0
2λγ0

+ sign(γh )
η

2PL
−

√
η2 + sign(γh )

2PL
(5)

MP
′′
=

χ0
2λγ0

+ sign(γh )
η

2PL
+

√
η2 + sign(γh )

2PL
(6)

where the denominations PL, MP
′ and MP

′′ refer to the
fact that these quantities are representative of segments in
the reciprocal space [7]. The deviation parameter η is given
by

η =
∆θ sin(2θB) + χ0(1 − γ)/2√

|γ | |Cp |
√
χh χ̄h

, (7)

where ∆θ = θ − θB indicates the angular deviation of the
incidence angle from θB . Here it should be noted that reflec-
tivity and transmissivity are invariant for transformations
∆ωB + ωB∆θ cot(θB) = const, with ∆ω = ω − ωB .

With these definitions, the transmissivity and reflectivity
in the case of Bragg geometry is given by

T =
(ξ ′ − ξ ′′) exp[−2πi(MP

′
+ MP

′′
)δ]

ξ ′ exp[−2iπδMP
′] − ξ ′′ exp[−2πiδMP

′′]
(8)

R = ξ ′ξ ′′
exp[−2πiδMP

′] − exp[−2πiδMP
′′]

ξ ′ exp[−2πiδMP
′] − ξ ′′ exp[−2πiδMP

′′]
(9)

Figure 6: Screenshot of a hard x-ray self-seeding simulation
for European XFEL with OCELOT.

where δ is the thickness of the crystal, the polarization
factor Cp is given by Cp = 1 for σ-polarized light and
Cp = − cos(2θB) for π-polarized light, and

ξ ′ = −
sign(Cp )√
|γ |

√
χh χ̄h

χ̄h

(
η +

√
η2 − 1

)
(10)

ξ ′′ = −
sign(Cp )√
|γ |

√
χh χ̄h

χ̄h

(
η −

√
η2 − 1

)
(11)

Analogous expressions hold in the Laue case. Implemen-
tations of these expressions in the OCELOT package allow
to combine x-ray beam generation studies with crystal optics,
which is needed e.g. for self-seeding simulations (see Fig.
6), or for design of x-ray split-and-delay lines.
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