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Abstract
In this paper we present the conceptual design of a mirror

symmetric chicane-type beamline with two dipole-mode

cavities for transverse-to-longitudinal emittance exchange.

INTRODUCTION
Optical systems for transverse-to-longitudinal emittance

exchange (EEXs) were initially proposed in application to

the free electron lasers for transverse emittance reduction

in an electron beam with a smaller longitudinal emittance

[1]. Since then EEXs involving single transverse deflecting

cavity (TDC) were in great details studied theoretically and

experimentally, and many interesting applications of such

beamlines were suggested [2–6].

Among all EEXs chicane-type beamlines are of keen inter-

est, because they do not alter the beam propagation direction.

To our knowledge, the first design of such EEX was pre-

sented in [6] and, in minimal configuration, can be seen in

Fig. 1 (beamline one). Besides TDC and four dipoles, this

beamline includes fundamental (accelerating) mode cavity

(FMC) to cancel the longitudinal acceleration in the TDC

(the so-called thick-lens effect) and two quadrupoles (green

ellipses) to reverse the dispersion at the TDC location.

TDC FMC

Figure 1: Schematic of non-symmetric chicane-type EEX.

TDC TDC

Figure 2: Schematic of symmetric chicane-type EEX.

The beamline one demonstrates two features which are

common to all EEXs with a single TDC. First, such EEXs

cannot be mirror symmetric with respect to the TDC center

and, second, without involvement of at least one FMC the

emittance exchange cannot be made exact even on the level

of the linear beam dynamics. One of the ways to overcome

these limitations was found in [7] where properties of EEXs

utilizing two TDCs instead of one were investigated. In this

paper we detail some results of [7] and present a mirror

symmetric chicane-type EEX with two TDCs which does

not require additional FMCs for compensation of the thick-

lens effect. Schematic of this beamline (again, in minimal

configuration) can be seen in Fig. 2 (beamline two), and there

are the following similarities and differences in comparison

with the beamline one:
∗ vladimir.balandin@desy.de

• Quadrupoles in the beamline one are used for the re-

version of the entrance dogleg dispersion and both are

horizontally focusing. Quadrupoles in the beamline

two have similar purpose and also must provide dis-

persion sign change, but in this case between the TDC

centers. Besides that, they have an additional duty and

work for suppression of the thick-lens effect, which

allows to avoid usage of FMCs.

• With equal dispersions generated by the entrance dog-

leg, the total transverse deflection required is equal

for both beamlines. It means that the strength of each

TDC in the beamline two is two times smaller than the

strength of the single TDC in the beamline one.

• The mirror symmetry of the beamline two automati-

cally cancels part of nonlinear aberrations in the beam-

line map.

MATRICES AND SYMMETRIES
In the deriving conditions for a beamline to be an EEX,

we consider the linear symplectic dynamics in the horizontal

and longitudinal degrees of freedom and ignore the vertical

degree of freedom, which (on the linear level) is assumed

to be decoupled from the two others. Still, for convenience,

we index elements of the 4× 4 horizontal-longitudinal trans-
port matrices as if these matrices were extracted from the

complete three degrees of freedom 6×6 matrices, where the
first degree of freedom is horizontal, the second is vertical,

and the longitudinal comes as the third.

Transport Matrices
From the assumptions made it follows that the horizontal-

longitudinal matrix of a magnetostatic system has the form

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 0 m16

m21 m22 0 m26

m51 m52 1 m56

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

and, as concerning the TDC matrix, we take it in the com-

monly used approximation

R(κ, lc, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 lc κlc/2 0

0 1 κ 0

0 0 1 0

κ κlc/2 qκ2lc 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where lc is the cavity length, κ is the deflecting strength,
and q is the energy gain factor. The particular value of q
depends from the cavity design and, for example, for the

n-cell pillbox resonator satisfies 1/6 < q ≤ 1/4.
Approximations made in the equations of motion in order

to obtain matrix (2) include among others the neglection of

the terms of the order O(γ−2
0

), where γ0 is the Lorentz fac-
tor of the reference particle. To be consistent with this, we
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assume that these terms were also neglected during deriva-

tion of all other matrices. With this convention matrices of

straight drift-quadrupole systems have m56 = 0 and the TDC

matrix can be decomposed into the product

R(κ, lc, q) = D(lc/2) C(κ, qlc ) D(lc/2), (3)

where D(l) is the matrix of a drift space of the length l and

C(κ,w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 κ 0

0 0 1 0

κ 0 wκ2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4)

is the “thin-lens image” of the matrix (2).

Optics Symmetries
Thematrix of a beamline which is mirror symmetric about

the x − y plane to the beamline with the 4 × 4 horizontal-
longitudinal transport matrix

M =

[
M11 M13

M31 M33

]
(5)

is given by the formula

MR = TRM−1TR =

⎡⎢⎢⎢⎢⎣
SM�

11
S −SM�

31
S

−SM�
13

S SM�
33

S

⎤⎥⎥⎥⎥⎦ , (6)

where TR = diag(1,−1,−1, 1) and

S =
[
0 1

1 0

]
, (7)

and the matrix of the beamline which is mirror antisymmet-

ric to the original beamline (reversed and then rotated by

180◦ around the longitudinal axis) can be calculated accord-
ing to the rule

MA = TAM−1TA =

⎡⎢⎢⎢⎢⎣
SM�

11
S SM�

31
S

SM�
13

S SM�
33

S

⎤⎥⎥⎥⎥⎦ , (8)

where TA = diag(−1, 1,−1, 1).
With these definitions the TDC matrix (2) satisfies

[
R(κ, lc, q)

]
R = R(−κ, lc, q), (9a)

[
R(κ, lc, q)

]
A = R(κ, lc, q), (9b)

which means that the TDC matrix is mirror antisymmetric

with respect to itself. It gives simple and natural explanation

to the fact that EEX with a single TDC cannot be designed

to be mirror symmetric with respect to the TDC center.

Mirror Symmetric and Antisymmetric EEXs
By definition, EEX is a beamline with the transfer ma-

trix T which has zero 2 × 2 diagonal submatrices T11 and
T33. So the eight elements of the matrix T must be equal

to zero, but it gives only four independent constraints be-

cause owing to the symplectic conditions equations T11 = 0
and T33 = 0 are equivalent. For mirror symmetric or anti-
symmetric beamline equations T11 = 0 and T33 = 0 can be
re-expressed in terms of the matrix M of the first beamline

half with the result that these equations become equivalent

to the constraints

ST11 = M�11 S M11 − M�31 S M31 = 0, (10a)

ST33 = M�33 S M33 − M�13 S M13 = 0, (10b)

for the mirror symmetric EEX, and to the conditions

ST11 = M�11 S M11 + M�31 S M31 = 0, (11a)

ST33 = M�33 S M33 + M�13 S M13 = 0, (11b)

for the mirror antisymmetric case.

One sees that the transpose symmetry of the matrices

ST11 and ST33 in Eqs. (10) and (11) reduces the number of
constraints from four for the general beamline to three for

the beamline which is mirror symmetric or antisymmetric.

Symmetric EEXs with Two TDCs
Separated by Drift-Quadrupole Optics
Let us consider symmetric EEX with two TDCs separated

by the drift-quadrupole optics, i.e. let us assume that the

matrix of the first half of the beamline has the form

M = B C(κ,w) A, (12)

where w = qlc , B is the matrix of a drift-quadrupole system,

A is the matrix of a general dispersive magnetostatic system,

and drifts form the decomposition (3) are included into the

optics blocks described by the matrices A and B. Then

constraints (10) turn into requirements

2 a16 κ = −1, (13a)

b11 a16 + b12 a26 = 0, (13b)

b12 b22 = w, (13c)

and constraints (11) become equivalent to the equations

2 a16 κ = −1, (14a)

b21 a16 + b22 a26 = 0, (14b)

b12 b22 = −w, (14c)

where a16 and a26 are the horizontal dispersion and its slope
at the center of the first TDC, respectively.

Let us discuss, for example, Eqs. (13) inmore details. One

sees, that Eq. (13a) requires cavity strength to be matched

to the horizontal dispersion at the cavity center, Eq. (13c)

works for the suppression of the thick-lens effect, and Eq.

(13b) forces horizontal dispersion to cross zero in the beam-

line symmetry point and brings dispersion and its slope at

the center of the second TDC to the values −a16 and a26,
respectively. Note also that from Eqs. (13a) and (13b) it

follows that b12 � 0.

CHICANE-TYPE SYMMETRIC EEX
Let us return to the beamline two and look at the relations

between its parameters in the framework of the thin-lens

formalism. Because of the need of dispersion reversion

between the TDC centers, both quadrupoles in this beamline

are horizontally focusing. So, in order to enable at least some

possibilities for the vertical focusing control, let us add to

the minimal configuration one more quadrupole placing it in
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the system symmetry point. With this assumption the matrix

B in Eq. (12) takes on the form

B = Q(k2/2) D(l2) Q(k1) D(l1), (15)

where

Q(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

k 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(16)

is the matrix of a quadrupole thin-lens, and l1 > lc/2 and

l2 > 0 are the distances from the center of the first TDC to

the first thin-lens and from the first thin-lens to the system

symmetry point, respectively.

With the dispersion slope a26 = 0, Eqs. (13) can easily be
solved with respect to the unknowns k1 and k2. The solution

k1 = −1 / l2, k2 = 2 (l1 + w − l2) / l22 (17)

is unique and completely fixes the horizontal focusing block

of the triplet matrix BRB to the form

(BRB)11 =
[ −1 2w

0 −1
]
. (18)

One sees that the only possibility left by Eqs. (17) for the

vertical focusing control is the proper choice of the distances

l1 and l2. It is not much and, in general, more quadrupoles
need to be added to the system, but still there are some

positive opportunities. For example, for l2 = 2(l1+w)/3 we
have k2 = −k1 and the complete triplet acts on the vertical
motion as a drift of the length 2(4l1 +w)/3, which is shorter
than the triplet length 2(5l1 + 2w)/3.

Dispersion Boosting by Means of Quadrupoles
Due to the reciprocal relationship (13a) between disper-

sion at the TDC center and the TDC strength, increasing

of dispersion allows to reduce excitation of TDCs, which is

important for high energy applications. In the case when the

dispersion boosting can be done by means of quadrupoles,

it becomes possible to use not only weaker cavities, but

also weaker dipoles, which is helpful for suppression of the

effects of coherent synchrotron radiation.

Dispersion boosting in our system can be done, for exam-

ple, by placing two more quadrupoles (four in total, due to

the system symmetry) somewhere between the exit of the

first chicane dipole and the entrance of the first TDC. In this

situation one can not only increase the dispersion, but also

preserve the condition a26 = 0, so that the parameters of the
inner triplet still will be given by Eqs. (17). But, because

Eqs. (13) do not require dispersion slope at the TDC center

to be equal to zero, it could make sense to consider also

the simpler configuration in which only one horizontally

defocusing quadrupole is added to each system half as it is

shown in Fig. 3. Solving for this beamline Eqs. (13) with

respect to the unknowns k1 and k2, one obtains

k1 = −1 / l2 − u / l1, (19a)

L3 L4 L1 L2

L5

L6

Figure 3: First half of dispersion boosted EEX.

k2 = 2
[
w + (1 − u)l1 − (1 − u)2l2

]
/
[
(1 − u)2l22

]
, (19b)

where

u = (l1 a26 / a16) (1 + l1 a26 / a16)−1 . (20)

As concerning position l5 and strength k0 of the additional
lens, let us first introduce dispersion boosting factor z (the
ratio of the boosted and the original dispersions) and, second,

let us assume that l4 < l3. Taking now l5 = l6 = (l3 +
l4)/2, which in the small angle approximation for the dipole
deflection is the position providing the largest z for the fixed
k0 value, one obtains

k0 =
l3
l2
5

(z − 1), l1
a26
a16
=

l1
l5

z − 1
z
. (21)

Eqs. (19) and (21) tell us that when the factor z is fixed, then
the possibility left for the control of the vertical focusing

is again, as in the system without dispersion boosting, only

the choice of the distances lm . Unfortunately, the question
is whether exists a satisfactory choice of these distances or

not cannot be answered in the general form. It depends on

particular vertical focusing requirements and it is, eventually,

a designer choice either useminimal or next-to-minimal EEX

configuration, or add more quadrupoles to the system.
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