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Abstract

Most feasibility studies for modern accelerator concepts,

including superconducting multicell RF-cavity-resonators in

circular accelerators, depend on computing a large number

of eigenmode frequencies and field patterns to obtain typical

figures of merit. This task includes computationally inten-

sive studies. To obtain the full eigenfrequency spectra most

of these studies are performed in 3D, require a great amount

of computation resources and thus are limited to a few hun-

dred or thousand eigenmodes. To overcome this issue, some

codes make use of the axisymmetric geometry of most of

the RF-cavity-resonator structures and solve the problem in

2D. Solving in 2D however reduces the eigenmode spectra

to eigenmodes with no azimuthal dependencies (so called

monopole modes). Due to the lack of freely available and

easy to use 2.5D eigenmode solvers which are able to solve

for the full 3D field in a reduced 2.5 dimensional problem,

we developed yet another cavity solver (Yacs), a simple FEM

based solver capable of solving for the full 3D eigenmodes

of axisymmetric problems while only requiring a fraction

of the computation resources required by most modern 3D

codes.

INTRODUCTION

Numerical calculation of resonant eigenmodes with the

eigenfrequency ω ∈ C \ {0} in a rf-structure usualy involves

solving the vector Helmholtz equation for the electric field

that arises from the Maxwell equations in a bounded domain

Ω ⊂ R3

∇ ×
(
μ−1
∇ × E

)
− ω2εE = 0 . (1)

Closed-form solutions of (1) can only be obtained for simple

geometries like cylindrical or spherical resonators.

The Sparse Eigenvalue Problem

In the case of an axisymmetric problem domain we may

use spherical coordinates and expand the azimuthal compo-

nent of the electric field by a Fourier series

E (r ) =

∞∑
m=0

E
(c)
m (r, z) cos (mθ) + E

(s)
m (r, z) sin (mθ) .

(2)

Due to the pairwise orthogonality of the Fourier basis func-

tions we receive a decoupled problem and can solve for each

mulipole mode m individually. Applying the finite element

method on the problem stated in (1) together with the az-

imuthal fourier series expansion (2) we can approximate
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(1) with a sparse generalized eigenvalue system. This has

allready been discussed thoroughly in earlier works [1]. The

resulting sparse generalized eigenvalue system is described

by (
K

pp
K

pθ

K
pθT

K
θθ

) (
Êp

Êθ

)
= ω2

(
M

pp 0

0 M
θθ

) (
Êp

Êθ

)
(3)

KÊ = ω2
MÊ (4)

with

K
pp

i j
= 〈μ−1

θ
r∇p × φi ,∇p × φ j 〉 + m

2〈μ−1
p r
−1φi ,φ j 〉

K
pθ

i j
= m〈μ−1

p r
−1φi ,∇pψ j 〉

K
θθ

i j
= 〈μ−1

p r
−1
∇pψi ,∇pψ j 〉

M
pp

i j
= 〈ε prφi ,φ j 〉

M
θθ

i j
= 〈εθr

−1ψi ,ψ j 〉

where K and M are typically referred to as stiffness- resp.

mass-matrices, p (in-plane) denotes operations and vectors

with respect to the r̂ and ẑ direction, while φx together with

ψx refer to the global mapping of the basis functions with

φx referring to the vector-valued in-plane component and

ψx referring to the out of plane scalar component.

IMPLEMENTATION

The primary part of the FEM code has been developed

in C++ using state-of-the-art numerical libraries to achieve

maximum performance and reliability. The meshing of the

problem domain is performed with Triangle [2], general

dense and sparse algebra is done using Eigen v3 [3] and

solving the sparse generalized eigenvalue problem has been

realized with ARPACK [4] in conjunction with UMFPACK

[5]. The latter is used for solving sparse linear systems. In

this first iteration of Yacs we solely use first order basis

functions for expanding the trial and test functions.

Boundary Conditions

In the case of solving multipole modes, we artifically

introduce PEC boundary conditions on the rotation axis and

thus force the electrical field parallel to the rotation axis to

vanish. In order to avoid the singular terms for r = 0 in (3),

we use a Gauss quadrature scheme that only evaluates points

inside the domain and avoids those points on the boundary

of the domain.

BENCHMARK

All the benchmarks presented in the following were per-

formed on a simple ν = 500 MHz pillbox cavity for which
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closed-form solutions of (1) are well known [6]. For compar-

ison we also include benchmarking data obtained with COM-

SOL Multiphysics 5.0 [7] using the Matlab [8] LiveLink™

interface. COMSOL uses second order basis functions for

expanding the function space of the test and trial functions.

Monopole Performance

Solving for monopole modes (m = 0) can be performed

on the reduced 2D problem. In this case, all terms involving

the evaluation of m in (3) vanish, resulting in block diag-

onal stiffness- and mass-matrices and thus increasing the

computational performance significantly. COMSOL also

supports solving 2D axisymmetric problems. The relative

frequency deviations with reference to the analytical solution

of the first 6 monopole modes as a function of the number

of elements and the time required by Yacs and COMSOL,

are displayed in the Figs. 1 and 2. COMSOL has a better

convergence behavior which is attributable to the second

order polynomial function space basis. Nonetheless Yacs

is able to outperform COMSOL when considering the so-

lution time required, down to relative frequency deviations

of 1 × 10−5 depending on the mode, which can be beneficial

for high-dimensioned optimization problems.
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Figure 1: Relative frequency deviation of the first 6 mono-

pole modes obtained from Yacs and COMSOL with respect

to the analytical solution of a 500 MHz pillbox-cavity as a

function of the number of finite elements in the problem

domain.

Multipole Performance

Solving the 2.5D problem (m � 0) can in principle be

performed with COMSOL. Unfortunately, this solver cur-

rently only supports coaxial problems so that we were only

able to solve the problems in 3D with COMSOL. A com-

parison of the first 50 dipole respectively quadrupole modes

numerically obtained with Yacs, and the analytical solution,
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Figure 2: Relative frequency deviation of the first 6 mono-

pole modes obtained from Yacs and COMSOL with respect

to the analytical solution of a 500 MHz pillbox-cavity as a

function of the solution time required.
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Figure 3: Comparison of analytical and numerical solutions

for the first 50 dipole modes (m = 1) obtained with Yacs

utilizing nelem = 246470 mesh cells.

is displayed in the Figs. 3 and 4. All eigenfrequencies were

obtained with a single solver run. The eigenfrequencies ob-

tained with Yacs are in good agreement with the analytical

solutions and contain no spurious modes for ω > 0 Hz. The

relative frequency deviations with reference to the analyti-

cal solution of the first 4 multipole modes as a function of

the number of elements and the time required by Yacs and

COMSOL, are displayed in the Figs. 5 and 6. COMSOL

still has a better convergence behavior due to the second

order polynomial basis but sacrifices performance for higher
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Figure 4: Comparison of analytical and numerical solutions

for the first 50 quadrupole modes (m = 2) obtained with

Yacs utilizing nelem = 246470 mesh cells.

multipole orders. This holds especially true when observ-

ing the solution times where Yacs manages to outperform

COMSOL since the convergence behavior of Yacs is almost

constant as a function of the azimuthal mode number m.
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Figure 5: Relative frequency deviation of the first 4 multipole

modes obtained from Yacs and COMSOL with respect to the

analytical solution of a 500 MHz pillbox-cavity as a function

of the number of finite elements in the problem domain.

CONCLUSION

Using Yacs, we are able to solve non-coaxial 2.5D prob-

lems in a fraction of the time required by modern 3D codes

up to very high accuracies. This especially holds true for
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Figure 6: Relative frequency deviation of the first 4 multipole

modes obtained from Yacs and COMSOL with respect to the

analytical solution of a 500 MHz pillbox-cavity as a function

of the solution time required.

higher multipole orders, since 3D codes need to sacrifice

mesh cells in order to resolve the change of the field in the

azimuthal direction. Besides that, the general convergence

behavior of Yacs is still limited due to the usage of first order

polynomial basis functions, which is expressed in the fact

that even the 3D code of COMSOL exceeds the convergence

performance due to the usage of second-order basis func-

tions. In order for Yacs to be competitive in the long term,

we need to focus on higher or even arbitrary [9] order basis

functions, ideally combined with adaptive mesh refinement.
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