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Abstract
At nonzero chromaticity, the threshold current due to

transverse coupled bunch instabilities in an electron stor-

age ring is defined by intrabunch head-tail motion of higher

than zeroth order. Multibunch tracking simulations predict

that this threshold can be increased to several times its orig-

inal value through the introduction of bunch lengthening

harmonic cavities. One previously suggested explanation

is the narrower spectra of the elongated bunches but reli-

able estimates for the threshold currents are not obtainable

for anything other than rigid beam motion since the usual

Sacherer formalism is not directly applicable to beams in

a non-harmonic potential. A new scheme has been devel-

oped in which the decay time of a higher than zeroth order

transverse head-tail mode may be estimated by taking into

account the synchrotron tune spread generated by the har-

monic cavity potential. This scheme is presented along with

the results of numerical simulations performed in order to

confirm the analytical predictions and justify the assump-

tions made. The extension of the scheme to more complex

scenarios is also discussed.

INTRODUCTION
Many present and future light sources based on an electron

storage ring make use of passive or active harmonic cavities

(HCs) [1] [2] [3]. In most cases, these are used to lengthen

the electron bunches, thus reducing the impact of intrabeam

scattering and allowing for a higher beam current while

maintaining the same small transverse emittance. HCs work

by modifying the radio frequency (RF) potential in which

the electron bunches are confined longitudinally. Since the

potential is no longer quasi-harmonic, the synchrotron tune

of a single particle is no longer approximately independent

of its amplitude of synchrotron oscillation. The stronger

amplitude dependence results in a large tune spread within a

bunch and Landau damping of longitudinal instabilities [4].

The use of harmonic cavities has important consequences

in the transverse plane, particularly regarding head-tail mo-

tion. A head-tail mode describes coherent motion within

a bunch. At the lowest order (m = 0), this is a dipole os-

cillation of the whole bunch while at higher order, there is

a change in betatron phase along the bunch so that there is

some longitudinal structure to the transverse oscillation with

nodes and antinodes. The effect of nonzero chromaticity is

to add a further modulation of the transverse motion at the

chromatic frequency, shifting its spectrum in the frequency

domain. Head-tail motion is important for multibunch in-

stabilities since the collective motion of multiple bunches
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is strongly linked to the overall motion of each individual

bunch.

A HC lengthened bunch corresponds to a narrower range

of frequencies and so a small positive chromaticity is more

effective in decoupling the zeroth order head-tail mode from

the damaging impedance at negative frequency, so called

head-tail damping. Frequency domain calculations therefore

show a significant improvement in coupled bunch instability

threshold currents for the m = 0 mode [5]. As the chro-

maticity is increased further, for a single RF system, the

threshold current would then be limited by the presence of a

first order head-tail mode which is not damped since its spec-

trum peaks at a negative frequency. However, because of

the synchrotron tune spread from the HC-modified potential,

the higher than zeroth order head tail modes will no longer

remain coherent indefinitely as they would in a harmonic

potential. Studies of this regime with HCs are therefore, at

present, limited to multiple particle tracking and although

these simulations show that an improvement in the current

threshold is maintained [6], it can no longer be attributed

solely to the lengthening of the bunch. This paper attempts

to quantify the contribution of the synchrotron tune spread.

THEORY
The position of a particle in longitudinal phase space can

be expressed using cartesian coordinates τ and δ where the
former is the arrival time with respect to the synchronous

particle (τ > 0 refers to the head of the bunch) and the lat-

ter is the energy deviation normalised by the design energy.

Using, as an approximation, a sinusoidal oscillation at syn-

chrotron tune Qs , the motion of a particle in longitudinal

phase space can be expressed as

τ = τ̂ cos(ωs (τ̂)t + ψ0) (1)

δ = − τ̇

αc
=
ωs (τ̂)
αc

τ̂ sin(ωs (τ̂)t + ψ0) (2)

where τ̂ is the synchrotron amplitude, ψ0 is the synchrotron
phase at t = 0, αc is the momentum compaction factor

and ωs = Qsω0 is the angular synchrotron frequency for

angular revolution frequency ω0. ωs has been expressed

as a function of the amplitude τ̂ so that the equations can
approximate nonharmonic potentials, ignoring the inevitable

harmonics that these introduce.

Longitudinal phase space can be normalised and con-

verted into convenient polar coordinates (r, θ) by multiply-
ing the δ coordinate by αc/ωs (r). A particle’s synchrotron

amplitude and phase can then be determined from its position

in synchrotron phase space. Under the current approxima-

tion, τ̂ = r and ψ0 = θ − ωs (τ̂)t [7].
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In a single, purely azimuthal head-tail mode of order m,
the phase of a particle’s betatron oscillation is dependent

on the synchrotron phase and, when there is chromaticity,

the synchrotron amplitude [7]. Taking one point (r, θ), the
complex betatron coordinate, whose imaginary component

is proportional to the trajectory angle, can be written as

y(r, θ, t) = ŷ exp

[
i
(
m(θ − ωs (r)t) − ωβt + r

ξω0

αc
cos θ

)]
(3)

whereωβ is the angular betatron frequency, ŷ is the betatron

amplitude and ξ is the chromaticity. Assuming all particles
have the same betatron amplitude, the dipole moment of a

bunch can then be calculated as

〈y〉(t) =
∫ ∫

y(r, θ, t)ρ(r, θ)drdθ∫ ∫
ρ(r, θ)drdθ

(4)

where ρ is the beam charge distribution in longitudinal phase

space. Integrating over a sector of longitudinal phase space

gives the coherent motion of one part of the bunch.

Radial Bunch Distributions in a Flat Potential
An important case for a double RF system is the flat po-

tential condition where the tuning of the harmonic cavities

is such that the first and second time derivatives of the po-

tential are zero at the synchronous phase of the RF. When

this condition is met, the bunch has a quartic distribution in

time and is as long as possible without being double peaked

or asymmetric. For small synchrotron amplitudes, the syn-

chrotron tune is then proportional to the amplitude with the

constant of proportionality ks given by

ks = Qs0hω2
0

π

2K (1/
√
2)

√
n2 − 1
6

(5)

where Qs0 is the synchrotron tune without the HC, K is the

complete elliptic integral, h is the ring harmonic number
and n is the RF harmonic of the HCs [8].
Equation 4 has been evaluated for a flat potential and for

two approximate radial particle distributions ρ(r). The first

Figure 1: Decoherence of the m = 1 mode in a turn by

turn simulation of a beam in a flat potential. The betatron

oscillation has been undersampled for illustrative purposes.

is a uniform particle distribution given by

ρuniform(r) =
⎧⎪⎨⎪⎩

q

4πσ2
r

if 0 ≤ r < 2σr

0 if r ≥ 2σr

(6)

where q is the bunch charge and σr is the RMS bunch length.

The second is a radial Gaussian distribution given by

ρGauss(r) =
q

2πσ2
r

exp

(
− r2

2σ2
r

)
. (7)

The limits of the integration over the synchrotron phase in

Eq. 4 were set to determine the average betatron coordinate

of the particles in a sector of longitudinal phase space of

angular spread 2Δθ around synchrotron phase θ.
After integration of the denominator and integration of

the numerator over r , Eq. 4 becomes

〈y〉(θ,Δθ, t) =
∫ θ+Δθ

θ−Δθ
ŷ exp(i[mθ ′ − ωβt])

2Δθ
×

F
(
mkstσr − ξω0

αc
σr cos θ

′
)

dθ ′ (8)

where F is a functionwhose form depends on the distribution.

In the case of the uniform distribution, it is given by

Funiform (x) =
e−2i x − 1 + 2ixe−2i x

2x2
(9)

whereas for the Gaussian distribution, it is given by

FGauss(x) =
[
1 − x√

2
D

(
x√
2

)
− i

√
π

2
xe−

x2

2

]
(10)

where D is the Dawson function.

In the case where the chromaticity ξ is zero, the remaining
integration over θ ′ can be evaluated analytically:

〈y〉(θ,Δθ, t) = ŷ exp(i[mθ − ωβt]) sin(mΔθ)
mΔθ

F (mkstσr ) . (11)

Equations 8 and 11 are similar for both distributions in a har-

monic potential, i.e. where the synchrotron tune is indepen-

dent of the particle amplitude. It is simply necessary to set

ks = 0 and to multiply the right hand side by exp(−imωs0t)
where ωs0 = Qs0ω0. For the case where the chromaticity is

nonzero, numerical integration of Eq. 8 (and the harmonic

potential equivalent) is possible for both distributions.

NUMERICAL MODEL
A numerical model was used to test the theory outlined

in the previous section. Turn by turn transformations in

longitudinal phase space were performed using the equations

τi+1 = τi − 2παc

ω0
δi+1 (12)

δi+1 = δi+

eVRF
E0

[sin(hω0τi + φs ) + κ sin(hnω0τi + nφh )] − Urad

E0
(13)
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where the index i refers to the turn number, VRF is the ampli-
tude of the RF voltage, E0 is the synchronous particle energy,
φs is the synchronous RF phase, Urad is the total energy lost

to radiation in one turn and e is the elementary charge. κ and
φh are parameters of the HC that must be tuned to obtain

the flat potential condition [9]. The synchrotron tune with

no HC and in the harmonic potential approximation Qs0 is

determined by the machine parameters but their exact values

are not relevant to the following discussion.

A distribution of 105 particles, quartic in time and Gaus-

sian in energy, was generated and the synchrotron amplitude

and phase of each particle were determined from its position

in longitudinal phase space as described above. A coherent

head-tail mode was then excited in the beam by assigning

each particle the same betatron amplitude and a betatron

phase according to Eq. 3.

Figure 1 shows the results of tracking of the m = 1 head-
tail mode. The destruction of the mode due to the spread in

synchrotron frequencies for particles at different time offsets,

and therefore, with different synchrotron amplitudes, is clear.

Figure 2 shows the resulting decrease in the amplitude of

Figure 2: Decoherence of the m > 0 head-tail modes in a

flat potential with zero chromaticity. The grey band covers

all the results of the tracking for modes m = 1 − 4.

the bunch head betatron motion, for the case where the chro-

maticity is zero. Here, the bunch head for a given mode is de-

fined as the sector of phase space between θ±Δθ = 0±mπ/2.
Choosing a smaller value for Δθ increases the initial ampli-
tude but does not change the rate of destruction of the coher-

ent head-tail motion. The rate scales with the mode number

m, allowing all modes to be shown on the same figure. For
m = 1, the mean decay time is very close to the inverse

of the RMS tune spread (kstσr = 3/
√
2 for the uniform

distribution and kstσr =
√
2/(4 − π) for the Gaussian).

The HC turn by turn tracking shows a similar decay except

there is some difference in the behaviour of the different

modes. This is due to the approximation of the single particle

motion as an oscillation at a single frequency, which is used

to determine the synchrotron amplitude and phase of each

particle. In reality, the motion contains harmonics of the

synchrotron frequency making it impossible to selectively

excite a single head-tail mode using this approximation.

The evolution of the bunch head motion for nonzero chro-

maticity was obtained by numerical integration of Eq. 8 and

is shown in Fig. 3. The behaviour is no longer the same for

Figure 3: Decoherence of the m = 1 head-tail mode in a flat
potential with nonzero chromaticity.

all modes and so only the m = 1 head-tail mode is shown.
The peak at some positive time offset is a consequence of

the change in betatron phase along the bunch due to the

chromatic modulation. The peak in the bunch tail oscillation

has the same time offset but negative. This phase advance

smears out the mode duration but also decreases the peak

amplitude so the effect this would have on a coupled bunch

instability is hard to predict. Again, the Gaussian and Uni-

form (not shown) bunch models are close to the turn by turn

simulation of the double RF system. In all cases, the oscil-

lation amplitude in a harmonic potential remains constant

at the same level as at t = 0. Modulation at the chromatic
frequency reduces the bunch head oscillation amplitude but

also introduces a nonzero dipole component.

CONCLUSION
It has been shown that the azimuthal head-tail modes tra-

ditionally used to estimate multibunch current thresholds

at nonzero chromaticity are destroyed by the synchrotron

tune spread introduced by a bunch lenghthening HC. In

fact, for the case of the MAX IV 3 GeV ring [1] (ks =
0.0036 ms−1 ps−1, σr = 193 ps), the lifetime of the m = 1
mode is around 3 ms, more than 9 times shorter than the

vertical radiation damping time of 28 ms. However, there

may be other limiting factors such as radial excitations of

the m = 0 mode. These have similar profiles to the even

numbered azimuthal modes but are usually disregarded in

multibunch studies due to their lower interaction with the ma-

chine impedance. They are not affected by the synchrotron

tune spread since every particle of the same amplitude has

the same betatron phase. Future simulation work with multi-

particle tracking and possibly, an extended frequency domain

code, is required. So far, a linear dependence of the syn-

chrotron tune on the particle amplitude,ωs (r) = ksr as seen
in the flat potential condition, has been studied. The above

calculations could be extended with higher order terms to

see if the form of the tune spread is significant.
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