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Abstract

I describe a generic formulation for the evolution of emit-
= tances and lattice functions under arbitrary, possibly non-
£ Hamiltonian, linear equations of motion. The average effect
& of stochastic processes, which would include ionization in-
f teractions and synchrotron radiation, is also included. I first
= compute the evolution of the covariance matrix, then the
% evolution of emittances and lattice functions from that. I
2 examine the particular case of a cylindrically symmetric
system, which is of particular interest for ionization cooling.
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INTRODUCTION

I describe a general formulation for the evolution of the
first and second moments of a beam distribution. Similar
formulations have been presented before ([1-3] are some
examples). What is of interest here is the definition of the
stochastic behavior in terms of probabilities, the direct com-
putation of the evolution of generalized lattice functions
(really the symplectic normalizing transformation of the sec-
ond moment matrix) and emittances, and the definition of a
metric for mismatch of those lattice functions.

MATHEMATICAL FORMULATION

Y (z, s) is the distribution function for particles in the
phase space coordinates z at a point s along a reference curve.
We define the first and second moments of this distribution

a(S)=fZ!//(Z,S)dZ (D

zu)=j}z—awnz—mnfw@ﬁw& P

The deterministic motion of a particle is described by

dz
T f(z,8) 3)

8 The stochastic part of the motion is described such that
2 p(x,z,5)dx ds is the probability that, for a particle at z
zin phase space and in the interval [s, s + ds), the particle
E is displaced in phase space by a value in the phase space
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volume of size dx at x. Then the continuity equation is

0
61/’ +V - [W(z,9)f(z,9)] =
S

fw(z - x,5)p(x,z —x,5)dx
- ¥(z,5) f o(x,z,8)dx. (4)
From this one can determine the evolution of the moments.

The system acts as though it were governed by a deterministic
vector field g such that

% =g(z,5)=f(z,5)+ fx p(x,z,5)dx 5)

Then
d
f=fgmwmn (©)
S
ax _ f[z —a(s)lg(z ) v (z, ) dz
ds
+ fg(z, )Mz — a1 y(z,5) dz (7
+ fxpr(x, Z, )Y (z,5)dx dz

If g(z,5) = go(z) + JH(s)z, with J the antisymmetric
symplectic metric (H is symmetric only for a Hamiltonian
system),

i_‘; = go(s) + JH(s)a(s) ®)
‘% = JH(5)X(s) = Z(s)H" (s)J

©)

+fxpr(x,z,s)¢/(z,s)dx dz

As long as X is positive definite (its definition insures that
it is positive semi-definite), then one can find a symplectic
A such that

(s) = A(s)E(s)AT (s) (10)

where E is diagonal with pairs of equal diagonal elements,
which are the emittances. A contains the generalized ver-
sions of the Courant-Snyder functions that describe the dis-
tribution. For a distribution “matched” to a lattice, A will
by definition refer to the generalization of the corresponding
functions for the lattice. If the emittances are distinct, the
right hand side of A can be multiplied by any block-diagonal
rotation with 2 X 2 blocks (there is more freedom when some
emittances are equal).
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The evolution of E and A is computed from

£ _ B(s) + JC(s)E(s) — E(s)C(s)J

Is (11D
B(s) = A'%s)‘fl—fA‘lT(s) (12)

_ AT d_A _ —1d_A
C(s)=A (s)st =JA s (13)

B and C are symmetric (C because A is symplectic). dX/ds
in Eq. (12) is computed from Eq. (7). This equation can
be split into 2 X 2 blocks (corresponding to the identical
diagonal pairs in E), giving the solution

dEl' 1

ds = zTI'Bii (14)
JB:; — B o
”461 ” +&il i=
JB;; - Bi;J
Cij = 4e; i#jANe =€ (15
+ &l +mijJ
E,‘B,‘jJ+EjJB[j . .
T 1+ ] N € # €;

J 4

where the &;; are arbitrary constants. The B;; and C;; are
2 x 2 blocks. The freedom of choice for &;; corresponds
to the rotational degree of freedom in A. The freedom of
choice for &;; and n7;; for i # j reflects the freedom to mix
eigenvectors that have identical eigenvalues. When €; = €;
and i # j, A must (and can) be chosen to make B;; traceless
and symmetric.

One important application of this formalism is to match-
ing. Say one can find a X (s) solving Eq. (7) for a given
lattice that has some desired property (a periodic solution
for a ring, a desired phase space distribution at a given posi-
tion, etc.). One can find a corresponding Ay (s) satisfying
Eq. (10), and the corresponding Ey (s) will be constant (for
a Hamiltonian system) or slowly and monotonically chang-
ing (for a system with damping or stochastic excitation). If
one uses a particular Xz as an initial condition for Eq. (7),
one can also find a corresponding Ap(s) satisfying Eq. (10).
This distribution is matched if A7'(s)Z5(s)A7'" (s) has
slow, monotonic variation similar to E; (s). Epg(s) will
have a slow, monotonic variation for the same reason that
E; (s) does. If A = AZIAB is a matrix with 2 X 2 rotation
blocks, this will achieve that matching. One can thus define
a metric for the degree of mismatch as

/l..
Z i[(AZi 2i = Maiv12i41) + (Daiist + Ais120)7]

Aij 2 2
+ Z (A2[ 2 T A% 05 T Azm 2j F A%0j41)  (10)
i#j

where A;; > 0 can be freely chosen.

Rotational Symmetry

Now consider only the transverse degrees of freedom, and
assume the system is unchanged under rotations about the
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longitudinal axis. The covariance matrix then takes the form

Oxx Oxp 0 L/2
_|oxp opp —-L/2 0
IR = 0 -L/2 oy 0xp a7
L/2 0 Oxp OTpp
The covariance matrix is diagonalized by
[ ’O-xx ’(Txx ]
(TXP | € O'XP
V2€0’xx 20—xx 20—xx VZEO’xx (18)
O xx O xx
2€ 2€
€ O—xp a—xp €
L V Zo-xx \/ZEO'XX \/260'xx V 20—xx |

where €2 = TxxOpp = Oxp and L is notably absent. The
resulting emittances are € + L/2 and € — L/2. When L = 0,
other diagonalizations are possible.

H will have the block form

H)CX

H (19)

o= [ 1]

H_X)C

For a Hamiltonian system, H, is symmetric and Hy, is
antisymmetric.
The mismatch A is

OLppOBxx T OBppOLxx — 2O-prO—Bxp —2er€p

(20)
€1LEB

which is just twice (since the mismatch includes both modes)

what one would obtains for the usual measure of emittance

increase [4] from mismatch in a single plane. Angular mo-

mentum does not enter into the diagonalizing matrix or the

mismatch.

IONIZATION COOLING

For the case of ionization cooling with uniform slabs,
p(x, z, ) takes on the form

p(zZE)

0(xg) ————
K pZ(ZE’ ZPKL)

|:pMS(xPJ_9 2, 8)0(XE)

XEE(ZE)

_ 21
c2p2<zE>z"“)] @D

The two terms in brackets arise from multiple scattering (the
first term) and energy loss and energy straggling (the second
term). The dependency on the phase space variables z (only
time will not come into play) and s takes into account only
the spatial placement of material and the length of the mate-
rial traversed depending on the particle trajectory. E, p, and
p. are functions that give energy, total momentum, and lon-
gitudinal momentum. The energy is a function of the energy
phase space variable in case the energy phase space vari-
able is an offset from a (possibly changing) reference energy.

MOPMNO18
741 ©

+ pde(XE, 2, 5)0 (xpl -

=0 Content from this work may be used under the terms of the CC BY 3.0 licence (© 2015). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



6th International Particle Accelerator Conference
= ISBN: 978-3-95450-168-7
@)
E Subscripts on x and z indicate that a subset of the compo-
E{ nents of the phase space vector should be used. The p,
Z subscript refers to two-dimensional transverse momentum;
"é the additional K subscript says to use the kinetic momentum
A vector; the ¢ subscript refers to the three-dimensional vector
of coordinates.

Next, define

—fxEPdE(xE,Z,S) dxg
mio(s) + my1(s)zE

f X2 paE(XE, 2, 8) dxg ~ mag(s)  (24)

mi(z,s) (22)

(23)

Q

mz(z, S)

ZE, the energy phase space variable, is a deviation from a
central or reference energy. m is the average energy loss per
unit length; details of the behavior of m; and m, are given
in [5]. Furthermore, for the purpose of computing matrix
elements, I assume that the relationship between kinetic and
canonical momenta is given by

zeBg(s) zeB(s)
£€09s10) -0
2 2

with z being the charge in units of the electron charge and
Bg the longitudinal field on axis. Then the contribution of
the absorber to H is rotationally symmetric and given by the
submatrices

PxK = Px + PyK = Py (25)

o Mo myozeBy
Hxx = [ IBCP ny = 2,86'[7 (26)
0 0 0
and there is an additional time-energy block in H of
0 —nip]
[0 0 } (27)

nce (© 2015). Any distribution of this work must maintain attribution to the author(s), title of the wo:

8 Here fc is a reference velocity (typically corresponding to
o the average distribution energy) and p is the corresponding
; momentum. Finally, the last term in Eq. (9) will be, neglect-
A ing some small terms, a matrix with diagonal elements

0, Sms. 0, Sms, 0, mag (28)

13.6 MeV \* p(s)
- 2
Spms(s) ( B z) Xo(s) (29)

where X (s) is the radiation length and p is the material
density [5].

This analysis is not always adequate for multiparticle sim-
5 ulations. Eq. (28) is inadequate due to significant tails in
2 the scattering and straggling distributions. Furthermore, the
2 terms above have neglected geometrical absorber shaping
£ that can be used to couple longitudinal and transverse mo-
S tion; this can be approximated in this analysis by including
a transverse variation in pqg and pys.

d under the terms of the CC

2]

Straight Solenoid Channel

The primary intent of this analysis is to permit the track-
ing of lattice functions and emittances to aid in beamline
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optimization at the design stage. In this subsection, how-
ever, [ will use the technique to study one particular phe-
nomenon: the longitudinal magnetic field in ionization cool-
ing absorbers. I will focus on a cylindrically symmetric
system.

Using Egs. (14), (18), (26), and (28), I obtain the evolution
of the emittances:

dexL/2) ~ my
ds " Bep

_ zeBs oxx

(1+
2

The emittance only changes in absorbers. o, and € are not
in general constant, but for the purposes of this discussion,
we assume that the absorber is short enough that the o, /€
remains sufficiently constant, that the magnetic field main-
tains o /€ approximately constant, or that an average value
of that ratio can be used.

An important quantity is r = zeBsoxx/(2€). In a con-
stant magnetic field with matched beam, |r| = 1. This leads
one of the emittances to grow linearly without bound. There
are two ways this can be addressed: the first is to construct
a lattice so as to make r < 1. This requires a variation in
the magnetic field, thereby reducing the energy acceptance
and dynamic aperture [6], but also improves the equilib-
rium emittance, due to the last term in Eq. (30). Second,
one periodically changes the sign of the magnetic field; this
causes the mode that was previously damped more slowly
to be damped more rapidly, and vice versa. If the reversal is
frequent enough, the system will behave as though r were 0.

€

) (exL/2)

SMS O xx

(30)
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