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Abstract

I describe a generic formulation for the evolution of emit-

tances and lattice functions under arbitrary, possibly non-

Hamiltonian, linear equations of motion. The average effect

of stochastic processes, which would include ionization in-

teractions and synchrotron radiation, is also included. I first

compute the evolution of the covariance matrix, then the

evolution of emittances and lattice functions from that. I

examine the particular case of a cylindrically symmetric

system, which is of particular interest for ionization cooling.

INTRODUCTION

I describe a general formulation for the evolution of the

first and second moments of a beam distribution. Similar

formulations have been presented before ([1–3] are some

examples). What is of interest here is the definition of the

stochastic behavior in terms of probabilities, the direct com-

putation of the evolution of generalized lattice functions

(really the symplectic normalizing transformation of the sec-

ond moment matrix) and emittances, and the definition of a

metric for mismatch of those lattice functions.

MATHEMATICAL FORMULATION

ψ(z, s) is the distribution function for particles in the

phase space coordinates z at a point s along a reference curve.

We define the first and second moments of this distribution

a(s) =

∫
z ψ(z, s) d z (1)

Σ(s) =

∫
[z − a(s)][z − a(s)]Tψ(z, s) d z (2)

The deterministic motion of a particle is described by

d z

ds
= f (z, s) (3)

The stochastic part of the motion is described such that

ρ(x, z, s)dx ds is the probability that, for a particle at z

in phase space and in the interval [s, s + ds), the particle

is displaced in phase space by a value in the phase space
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volume of size dx at x. Then the continuity equation is

∂ψ

∂s
+ ∇ · [ψ(z, s) f (z, s)] =∫

ψ(z − x, s)ρ(x, z − x, s) dx

− ψ(z, s)

∫
ρ(x, z, s) dx. (4)

From this one can determine the evolution of the moments.

The system acts as though it were governed by a deterministic

vector field g such that

d z

ds
= g(z, s) = f (z, s) +

∫
x ρ(x, z, s) dx (5)

Then

da

ds
=

∫
g(z, s)ψ(z, s) (6)

dΣ

ds
=

∫
[z − a(s)]g(z, s)Tψ(z, s) d z

+

∫
g(z, s)[z − a(s)]Tψ(z, s) d z

+

∫
xxT ρ(x, z, s)ψ(z, s) dx d z

(7)

If g(z, s) = g0(z) + JH (s)z, with J the antisymmetric

symplectic metric (H is symmetric only for a Hamiltonian

system),

da

ds
= g0(s) + JH (s)a(s) (8)

dΣ

ds
= JH (s)Σ(s) − Σ(s)HT (s)J

+

∫
xxT ρ(x, z, s)ψ(z, s) dx d z

(9)

As long as Σ is positive definite (its definition insures that

it is positive semi-definite), then one can find a symplectic

A such that

Σ(s) = A(s)E(s)AT (s) (10)

where E is diagonal with pairs of equal diagonal elements,

which are the emittances. A contains the generalized ver-

sions of the Courant-Snyder functions that describe the dis-

tribution. For a distribution “matched” to a lattice, A will

by definition refer to the generalization of the corresponding

functions for the lattice. If the emittances are distinct, the

right hand side of A can be multiplied by any block-diagonal

rotation with 2×2 blocks (there is more freedom when some

emittances are equal).
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The evolution of E and A is computed from

dE

ds
= B(s) + JC(s)E(s) − E(s)C(s)J (11)

B(s) = A−1(s)
dΣ

ds
A−1T (s) (12)

C(s) = AT (s)J
dA

ds
= J A−1 dA

ds
(13)

B and C are symmetric (C because A is symplectic). dΣ/ds

in Eq. (12) is computed from Eq. (7). This equation can

be split into 2 × 2 blocks (corresponding to the identical

diagonal pairs in E), giving the solution

dε i

ds
=

1

2
Tr Bii (14)

Ci j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JBi j − Bi j J

4ε i
+ ξii I i = j

JBi j − Bi j J

4ε i
+ ξi j I + ηi j J

i � j ∧ ε i = ε j

ε iBi j J + ε j JBi j

ε2
j
− ε2

i

i � j ∧ ε i � ε j

(15)

where the ξi j are arbitrary constants. The Bi j and Ci j are

2 × 2 blocks. The freedom of choice for ξii corresponds

to the rotational degree of freedom in A. The freedom of

choice for ξi j and ηi j for i � j reflects the freedom to mix

eigenvectors that have identical eigenvalues. When ε i = ε j
and i � j, A must (and can) be chosen to make Bi j traceless

and symmetric.

One important application of this formalism is to match-

ing. Say one can find a ΣL (s) solving Eq. (7) for a given

lattice that has some desired property (a periodic solution

for a ring, a desired phase space distribution at a given posi-

tion, etc.). One can find a corresponding AL (s) satisfying

Eq. (10), and the corresponding EL (s) will be constant (for

a Hamiltonian system) or slowly and monotonically chang-

ing (for a system with damping or stochastic excitation). If

one uses a particular ΣB as an initial condition for Eq. (7),

one can also find a corresponding AB (s) satisfying Eq. (10).

This distribution is matched if A−1
L

(s)ΣB (s) A−1
L

T
(s) has

slow, monotonic variation similar to EL (s). EB (s) will

have a slow, monotonic variation for the same reason that

EL (s) does. If Δ = A−1
L

AB is a matrix with 2 × 2 rotation

blocks, this will achieve that matching. One can thus define

a metric for the degree of mismatch as

∑
i

λii

2
[(Δ2i,2i − Δ2i+1,2i+1)2

+ (Δ2i,2i+1 + Δ2i+1,2i )
2]

+

∑
i� j

λi j

2
(Δ2

2i,2 j + Δ
2
2i,2 j+1 + Δ

2
2i+1,2 j + Δ

2
2i+1,2 j+1) (16)

where λi j > 0 can be freely chosen.

Rotational Symmetry

Now consider only the transverse degrees of freedom, and

assume the system is unchanged under rotations about the

longitudinal axis. The covariance matrix then takes the form

ΣR =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
σxx σxp 0 L/2

σxp σpp −L/2 0

0 −L/2 σxx σxp

L/2 0 σxp σpp

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(17)

The covariance matrix is diagonalized by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
σxx

2ε
0 0

√
σxx

2ε
σxp√
2εσxx

√
ε

2σxx

−
√

ε

2σxx

σxp√
2εσxx

0

√
σxx

2ε

√
σxx

2ε
0

−
√

ε

2σxx

σxp√
2εσxx

σxp√
2εσxx

√
ε

2σxx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where ε2
= σxxσpp − σ2

xp and L is notably absent. The

resulting emittances are ε + L/2 and ε − L/2. When L = 0,

other diagonalizations are possible.

H will have the block form

HR =

[
Hxx Hxy

−Hxy Hxx

]
(19)

For a Hamiltonian system, Hxx is symmetric and Hxy is

antisymmetric.

The mismatch Δ is

σLppσBxx + σBppσLxx − 2σLxpσBxp − 2εLεB

εLεB
(20)

which is just twice (since the mismatch includes both modes)

what one would obtains for the usual measure of emittance

increase [4] from mismatch in a single plane. Angular mo-

mentum does not enter into the diagonalizing matrix or the

mismatch.

IONIZATION COOLING

For the case of ionization cooling with uniform slabs,

ρ(x, z, s) takes on the form

δ(xq )
p(zE )

pz (zE, zpK⊥ )

[
ρMS(xp⊥, z, s)δ(xE )

+ ρdE(xE, z, s)δ

(
xp⊥ −

xEE(zE )

c2p2(zE )
zpK⊥

)]
(21)

The two terms in brackets arise from multiple scattering (the

first term) and energy loss and energy straggling (the second

term). The dependency on the phase space variables z (only

time will not come into play) and s takes into account only

the spatial placement of material and the length of the mate-

rial traversed depending on the particle trajectory. E, p, and

pz are functions that give energy, total momentum, and lon-

gitudinal momentum. The energy is a function of the energy

phase space variable in case the energy phase space vari-

able is an offset from a (possibly changing) reference energy.
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Subscripts on x and z indicate that a subset of the compo-

nents of the phase space vector should be used. The p⊥
subscript refers to two-dimensional transverse momentum;

the additional K subscript says to use the kinetic momentum

vector; the q subscript refers to the three-dimensional vector

of coordinates.

Next, define

m1(z, s) = −
∫

xE ρdE(xE, z, s) dxE (22)

≈ m10(s) + m11(s)zE (23)

m2(z, s) =

∫
x2
E ρdE(xE, z, s) dxE ≈ m20(s) (24)

zE , the energy phase space variable, is a deviation from a

central or reference energy. m1 is the average energy loss per

unit length; details of the behavior of m1 and m2 are given

in [5]. Furthermore, for the purpose of computing matrix

elements, I assume that the relationship between kinetic and

canonical momenta is given by

pxK = px +
zeBs (s)

2
y pyK = py −

zeBs (s)

2
x (25)

with z being the charge in units of the electron charge and

Bs the longitudinal field on axis. Then the contribution of

the absorber to H is rotationally symmetric and given by the

submatrices

Hxx =

⎡⎢⎢⎢⎢⎣
0

m10

βcp
0 0

⎤⎥⎥⎥⎥⎦ Hxy =

⎡⎢⎢⎢⎢⎢⎣
m10zeBs

2βcp
0

0 0

⎤⎥⎥⎥⎥⎥⎦ (26)

and there is an additional time-energy block in H of[
0 −m11

0 0

]
(27)

Here βc is a reference velocity (typically corresponding to

the average distribution energy) and p is the corresponding

momentum. Finally, the last term in Eq. (9) will be, neglect-

ing some small terms, a matrix with diagonal elements

0, SMS, 0, SMS, 0,m20 (28)

SMS (s) =

(
13.6 MeV

βc
z

)2
ρ(s)

X0(s)
(29)

where X0(s) is the radiation length and ρ is the material

density [5].

This analysis is not always adequate for multiparticle sim-

ulations. Eq. (28) is inadequate due to significant tails in

the scattering and straggling distributions. Furthermore, the

terms above have neglected geometrical absorber shaping

that can be used to couple longitudinal and transverse mo-

tion; this can be approximated in this analysis by including

a transverse variation in ρdE and ρMS.

Straight Solenoid Channel

The primary intent of this analysis is to permit the track-

ing of lattice functions and emittances to aid in beamline

optimization at the design stage. In this subsection, how-

ever, I will use the technique to study one particular phe-

nomenon: the longitudinal magnetic field in ionization cool-

ing absorbers. I will focus on a cylindrically symmetric

system.

Using Eqs. (14), (18), (26), and (28), I obtain the evolution

of the emittances:

d(ε ± L/2)

ds
= −m10

βcp

(
1 ∓ zeBs

2

σxx

ε

)
(ε ± L/2)

+

SMS

2

σxx

ε
(30)

The emittance only changes in absorbers. σxx and ε are not

in general constant, but for the purposes of this discussion,

we assume that the absorber is short enough that the σxx/ε

remains sufficiently constant, that the magnetic field main-

tains σxx/ε approximately constant, or that an average value

of that ratio can be used.

An important quantity is r = zeBsσxx/(2ε ). In a con-

stant magnetic field with matched beam, |r | = 1. This leads

one of the emittances to grow linearly without bound. There

are two ways this can be addressed: the first is to construct

a lattice so as to make r < 1. This requires a variation in

the magnetic field, thereby reducing the energy acceptance

and dynamic aperture [6], but also improves the equilib-

rium emittance, due to the last term in Eq. (30). Second,

one periodically changes the sign of the magnetic field; this

causes the mode that was previously damped more slowly

to be damped more rapidly, and vice versa. If the reversal is

frequent enough, the system will behave as though r were 0.
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