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Abstract
We review the existing phenomenological theories of

emittance growth with and without entropy terms and re-

examine the condition for thermal equipartitioning in an

unbunched charged-particle beam. The model incorporates

linear space charge and a uniform-focusing lattice. Because

of non-extensitivity of the transverse (“thermal”) energy

and the absence of a classical heat bath, we conclude that

a rigorous classical thermodynamics treatment of charged-

particle beams is not possible. In particular, the postulated

relationships between the rms emittance and temperature

and entropy must be qualified.

INTRODUCTION
Lapostolle suggested some 45 years ago [1] that a ther-

modynamic model may apply to the observed emittance

exchanges between degrees of freedom in intense charged-

particle beams (e.g., proton linacs at CERN). He went fur-

ther to comment that heat flow may occur between degrees

of freedom corresponding to different temperatures; under

these circumstances, entropy would increase and emittance

blow up in an irreversible manner.

Since Lapostolle’s work, phenomenological theories of

emittance growth have been developed by Wangler, Reiser,

and others [2, 3]. Furthermore, a connection between rms

emittance and entropy had been suggested by Lawson, La-

postolle and Gluckstern in 1973 [4]. Although the original

work by Wangler et al does not address reversibility, an ex-

tension of the theory by O’Shea [5] predicts a connection

between entropy changes and reversible and irreversible rms

emittance growth. However, a thermodynamic framework

for describing beam dynamics has neither been theoretically

examined in detail nor tested in simulations.

Recent work by Hofmann and Boine-Frankenheim [6]

emphasizes computational aspects of emittance and entropy

growth. Their simulation studies focus on the role of grid res-

olution and numerical collisions on (6D) rms emittance and

entropy growth in 3D beams confined by a periodic potential.

Moreover, Hofmann and Boine-Frankenheim compare the

numerical results to the predictions of a stochastic model de-

veloped by Struckmeier [7] based on temperature anisotropy

and the effect of using macro-particles.

ENTROPY AND EMITTANCE GROWTH
In the phenomenological theory of Wangler et al [2, 3],

the rate of change of normalized rms emittance (squared) in
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an unbunched beam is described by the equation

dε̃2n
dz
= −1

8
β2γ2

〈
x2
〉

K
d
dz

[
U (z)
W0

]
, (1)

where z is the axial coordinate, U (z) = W − Wu the dif-

ference between field energies per unit length of the actual

beam distribution and the equivalent uniform distribution,

i.e., the Kapchinskij-Vladimirskij (K-V) beam [3], and W0

is the space-charge field energy per unit length inside the

boundary of the equivalent K-V beam. The excess energy

U (z), or free energy, is available for the beam to thermalize.

The symbol K represents the generalized beam perveance,

which is proportional to current;
〈
x2
〉
=
〈
y2
〉
is the squared

rms transverse dimension at z, and the rest of the quantities
have the standard meanings from special relativity.

No statement about reversibility is made in the original
derivation of eq. (1). In O’Shea’s work [5], though, eq. (1)

is qualified as one valid when the entropy change is zero and,
therefore, when the rms emittance change is in principle

reversible by the application of appropriate forces. The
reversibility, however, will depend on our ability to apply

corrective forces with the same fine resolution that lead us to

conclude that no entropy growth occurred. In many practical

situations, this resolution is not possible and, hence, we must

conclude that entropy in fact increased and emittance change

is irreversible.

The normalized information entropy, Sn , in O’Shea’s work
is related to the normalized transverse rms emittance. For a

2-D beam we have [4]:

Sn (z) ≡ S2(z)
kBN L

= ln[ε̃n (z)] + ln[C(z)] − ln[A2], (2)

where kB is Boltzmann’s constant, N is the number of beam

particles per unit length, L, the bunch’s length, is L >>
transverse dimension. C(z) depends on the form of the

phase-space particle distribution at z, and A2 corresponds
to the size of the grid cell for the computation, or the exper-

imental resolution of the measuring device. Equation (2)

tells us that it is possible to have rms emittance growth while

entropy remains constant because the evolution of C(z) may
compensate for the growth. By the same token, it is possible

for rms emittance to decrease while entropy increases. The

value of C(z) at z = 0, the start of the simulation or experi-
ment, is denoted byC0. For the widely used K-V distribution,

for example, C0 = π; for a thermal (Gaussian) distribution,
C0 =

√
2π3/2 [4], more than twice the value for the K-V

distribution.
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The inclusion of the entropy term Sn in eq. (1) by O’Shea
[5] leads to

dε̃2n
dz
= −

2γ
〈
x2
〉

mc2N L

[
dÛ
dz
− Te f f

dSn
dz

]
, (3)

where the term Û comprises contributions from self-field

and transverse kinetic energy changes relative to the effec-

tive linear models (K-V beam distribution for the transverse

plane) as in eq. (1). Te f f is an effective transverse tempera-

ture for the beam given by:

Te f f =
mc2ε̃2n

kBγ
〈
x2
〉 . (4)

A “generalized” free-energy function is defined byO’Shea

as F̂ = Û − Te f f Sn , which is reminiscent of the Helmholtz
free-energy of classical thermodynamics. Apparently, how-

ever, Te f f in eq. (3) is factored out as a constant when taking

the derivative dF̂/dz. The entropy term Sn in the original
formulation [5], on the other hand, is the entropy of the aver-

age slice in the bunch; for an unbunched beam, it is implied

that N LSn is the entropy of the entire beam.
Returning to eq. (3), in the limit Te f f = 0 (cold beam),

the Maxwell-Boltzmann distribution is a uniform distribu-

tion, and eq. (3) reduces to eq. (1). In the opposite limit

of emittance-dominated beam, Te f f Sn >> Û . The original
phenomenological model of Wangler et al [2, 3] is applica-

ble to space-charge dominated beam transport where rms

emittance growth is driven by space charge forces and the

beam evolves to one whose distribution is close to a K-V

distribution. Naturally, this rms emittance growth is largest

for beam transport with small values of the tune depression,

i.e., strongly space-charge dominated beams [3]. The more

general model embedded in eq. (3) is in principle applicable

to beam transport with any value of tune depression.

EQUIPARTITIONING AND
EXTENSITIVITY

Temperature anisotropy leads to flow of thermal energy

from the “hot” to the “cold” degrees of freedon. In general,

the equipartitioning condition can be expressed as [3, 8, 9]:

ε̃x kx = ε̃y ky = ε̃z kz, (5)

where ε̃x,y,z represent rms emittances, and kx,y,z are

wavenumbers associated with particle oscillations in a beam

transport model with uniform external focusing and (linear)
space charge. For simplicity, we assume that ε̃x = ε̃y , as in
Appendix 4 of [3].

The transverse rms emittance, ε̃x , has been related to
temperature [3] and also to entropy [4, 5, 7]. The first case

is justified by the use of ε̃x as a measure of the beam di-

vergence which results from transverse kinetic (“thermal")

energy, while the connection to entropy would arise from the

identification of ε̃x with phase-space area and the number
of dynamical “states" associated with that area.

But in classical equilibrium thermodynamics temperature

is an intensive variable while entropy is an extensive vari-
able. Extensive variables scale linearly with the number of

particles in the system, while intensive variables remain con-

stant. In most contexts, it is clear what parameters should

be classified as intensive and which as extensive. Thus, a

classical gas occupying a volume V (extensive variable) and

at equilibrium temperature T and pressure p (T , p intensive
variables) can be partitioned into two equal volumes with a

wall without changing T ,p.
It is straightforward to show that a charged-particle beam

is a non-extensive system, i.e., that the energy per parti-
cle will depend on the number of particles. As before, we
consider an unbunched beam in a uniform-focusing chan-

nel. The total average energy per particle can be written as
the sum of contributions from the kinetic energy of trans-

verse motion, the potential energy associated with external

focusing, and the internal potential energy from linear space

charge. This average is over one wavelength of betatron os-

cillations including space charge, as presented in Sec. 6.2.1

in [3]. Explicitly,

eT = ek + ep + es = eT = ek0

[
2 − χ

2

(
1 − 4 ln b

a

)]
, (6)

where (see chapter 6 in Ref. [3]),

ek = ek0(1 − χ), ek0 ≡ γm(�ak0/2)2, (7)

ep = ek0, es =
ek0
2
χ [1 + 4 ln(b/a)] . (8)

In eqs (6-8), a = 2
√〈

x2
〉
is the effective matched beam

radius, b is the vacuum pipe radius, k0 is the (constant)
wavenumber of zero-current betatron oscillations (i.e., it

represents external focusing), γ is the relativistic mass fac-
tor, � is the beam axial speed, � >> �x , and χ is the space
charge (SC) intensity parameter defined by χ = K/(a2k2

0
)

[3]. Notice that ek0 depends on χ through the beam ra-

dius a. This radius must satisfy the matching condition,
a = 2

√
ε̃x/k, where k ≡ kx = ky is the depressed wavenum-

ber of betatron oscillations. In the limit of “zero” current,

a = a0 = 2
√
ε̃x/k0. Furthermore, the kinetic energy

of transverse motion is assumed to be small compared to

the net kinetic energy even for non-relativistic beams, i.e.

ek << m�2/2.
Returning to the expressions for the energy per particle,

eqs. (6-8), we find that in the limit of “zero" current (χ = 0)
we can write

eT = 2ek0 = 2γm(�a0k0/2)2 = 2γm�2ε̃x k0. (9)

With “zero" current, there would be no meaning to the con-

cept of extensive system, but we can still imagine changing

the number of particles and neglecting space charge alto-

gether. With constant focusing, we could postulate that

emittance is an intensive variable, i.e. a temperature-like
variable; but more generally, ε̃x k0 should be the intensive
parameter. Therefore, eq. (5) is, at best, an approximate con-

dition for thermal kinetic equilibrium when space charge is
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negligible, i.e. when k0 and not the depressed wavenumber
k characterizes particle oscillations in the beam.
In the limit of space-charge dominated transport where

χ = 1, or ε = 0, on the other hand, the total energy per

particle is,

eT = ek0

[
3

2
+ 2 ln

b
a

]
. (10)

Since ln(b/a) is of order unity, we can write, in the limit of
space-charge dominated transport, eT ∼ γm�2K , which is
just a statement of the non-extensitivity of the total trans-

verse energy as K , the beam perveance, is proportional to

the beam current. In conclusion, charged-particle beams

are not normal thermodynamical systems because the total

transverse energy per particle is not an intensive variable,

and, furthermore emittance and other parameters such as

χ are neither intensive nor extensive so cannot function as
thermodynamical variables.

DISCUSSION
The theories of rms emittance growth discussed above are

called “phenomenological” as they do not include explicitly

a physical mechanism or time scale for the emittance evolu-

tion. Thus, the theories allow a calculation of the net change
in rms emittance from an initial non-equilibrium distribu-

tion [3]. The theory embedded in eq. (1), for example, has

been verified in computer simulations and in experiments

at the University of Maryland and Los Alamos National

Lab [10, 11]. However, no tests of the extended theory be-

hind eq. (3) have been attempted. It is not obvious, in this

regard, that computer simulations (which yield reversible
dynamics over not-too-long runs and with enough resolu-

tion), can predict irreversibility of rms emittance growth, or
whether entropy as defined in [4–7], or otherwise, can guide

the simulations. More importantly, although classical ther-

modynamics is also a phenomenological theory, no rigorous

connection of emittance evolution to standard thermodynam-

ics seems possible despite the use of similar language. A

simple scenario, the free expansion of a charged-particle

beam, can illustrate the pitfalls of attempting a classical ther-

modynamics description and of associating emittance with

temperature or entropy.

The rms emittance of an expanding K-V beam is un-

changed, but the process is clearly irreversible. Thus, the

entropy term in eq. (3) should exactly balance the energy

term Û. Moreover, there is no heat exchange as in the stan-
dard free expansion of an ideal gas after the removal of

a partition in a divided (and thermally isolated) container.

Unlike the ideal gas, however, the effective temperature -

eq. (4) - decreases as the beam expands. Alternatively, we

can compare the free expansion of the beam with the adia-
batic expansion of an ideal gas whereby, for example, the
thermally-isolated gas works against a sliding piston and

gets colder; but then the question arises about defining work
and heat for processes in a charged-particle beam. In short,
it is not clear that a beam can undergo the equivalent of

isothermal and adiabatic expansions of ideal gases.

In a mathematical context, it is the non-extensitivity of

the total energy and entropy in charged-particle beams (and

gravitational systems as well) which in principle disallows

a standard thermodynamics treatment. This extensitivity

property is a fundamental requirement that leads to thermo-

dynamics relations such as the Gibbs-Duhen equation and

the very definition of temperature in normal thermodynam-

ics systems, as discussed in many textbooks (see e.g. [12]).

Nevertheless, a kinetic treatment of charged-particle beams

as non-neutral plasmas is always possible, but it is in general

not possible to equate kinetic and thermodynamic tempera-

tures.

Regarding entropy, any attempt at a rigorous statistical-

mechanics definition for the description of charged-particle

beams is met with difficulties. Thus, it would seem that be-

cause the K-V distribution is a micro-canonical distribution,
a micro-canonical entropy can be defined. IfΩ(E) is propor-
tional to the volume in phase space at a (constant) total en-

ergy E, the micro-canonical entropy is S(E) = kB lnΩ(E),
where Ω(E) is also interpreted as a thermodynamic prob-
ability. The entropy is extensive, i.e, additive, only if

the system can be subdivided into n subsystems such that
Ω = Ω1Ω2...Ωn , i.e. if the subsystems are statistically inde-
pendent. (In the micro-canonical ensemble, the interaction
among the system’s parts is all that counts.) But a charged-

particle beam cannot be arbitrarily partitioned into statisti-

cally independent sub-systems in the same way that an ideal

gas can. The latter is a necessary condition to assert that all

microscopic states, compatible with a constant total energy,

are equally accessible, i.e., have the same probability.

Another widely used concept in describing charged-

particle beams is the Boltzmann factor exp(−H/kBT ); here
H can be considered as the transverse Hamiltonian and T
as the transverse temperature (normally much larger than

the longitudinal temperature [3].) The canonical ensem-
ble is implicit in this picture, but no discernible heat bath,
which is a key component of the ensemble, is ever present!

Therefore T cannot be a thermodynamic temperature, but

simply a kinetic parameter characterizing the spread of ener-

gies in a model distribution. More importantly, a beam may

evolve towards an equilibrium characterized by an effective

Maxwell-Boltzmann distribution, but such equilibrium can-

not be rigorously described as thermodynamic equilibrium.

In our opinion, understanding the fundamental issue of re-

versibility/irreversibility of rms emittance growth in beams

requires a detailed study of the mechanisms involved. Such

a study would yield time scales and help guide both simu-

lations and experiments. A phenomenological picture may

still be useful, perhaps one based on constitutive relations

similar to those introduced in fluid dynamics or electromag-

netic theory. Nevertheless, we cannot discount the role of

entropy and other concepts from statistical thermodynamics

for a better description of charged-particle beam dynamics.
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