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Abstract
The transverse beam dynamics in Fermilab Recycler ring

has been analyzed using SCHARGEV Vlasov solver. In the
first part of paper we discuss how SCHARGEV analyses
collective instabilities for Gaussian bunch with strong space
charge in resistive impedance environment. In the second
part the bunched beam dynamics is studied depending on
head-tail phase and damper gain. An example for Fermilab
Recycler is presented.

SSC THEORY AND BUROV EQUATION
For transverse oscillations of bunched beams, a param-

eter of the space charge strength is a ratio of the maximal
space charge tune shift to the synchrotron tune. When this
parameter is large, the transverse oscillations are described
by a one-dimensional integro-differential Burov equation

ν y +
1

Qeff

d
d τ

(
u2

d y
d τ

)
= κ N

(
Ŵ + D̂

)
,
d y
d τ

�����τ→±∞ = 0 ,

derived in [1]. SCHARGEV Vlasov solver is based on nu-
merical solution of the equation above and for more details
see [2].

Below we will consider the case of Gaussian bunch which
corresponds to a thermal equilibrium when the bunch length
is much shorter than the rf wavelength [3]. In this case
the Sturm-Liouville problem for no-wake case leads to the
Burov-Balbekov functions [1, 4]:{

ȳ′′(τ) + ν e−τ
2/2 ȳ(τ) = 0,

ȳ′(±∞) = 0,

where the natural system of units is employed: the dis-
tance τ is measured in units of the RMS bunch length σ,
and, eigenvalues νk is measured in units of u2/σ2Qeff (0) =
Q2

s/Qeff (0). First eight eigenfunctions, ȳk (τ), are plotted in
Fig. 1.

Figure 1: The first 8 eigenfunctions of the Gaussian bunch,
ȳk (τ). The modes do not depend on the chromaticity, except
the common head-tail phase factor exp(−iζτ).
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DIPOLE MOMENTS AND DAMPER
For further discussion we need to introduce the bunch

dipole moments defined as functions of the head-tail phase:

Ik (ζ ) =
∫ ∞

−∞

ρ(τ) ȳk (τ)eiζτ dτ : I∗k (ζ ) = (−1)k Ik (ζ ),

where ρ(τ) =
∫ ∞
−∞

f (v, τ) dv = (2π)−1/2 exp(−τ2/2) is the
normalized line density of the beam. First four of them are
plotted in Fig. 2.

Figure 2: The first 4 bunch dipole moments for the Gaussian
bunch as a function of the head-tail phase, Ik (ζ ). Only real
or imaginary part is plotted for even and odd ks respectively.

Matrix elements of an operator of the linear bunch by
bunch damper can be constructed as a direct product of a set
of dipole moment functions

Ĝlm (ζ ) =
∫ ∞

−∞

∫ ∞

−∞

ρ(τ)ρ(σ) ȳl (τ) ȳm (σ)eiζ (τ−σ) dσ dτ

= Il (ζ )I∗m (ζ ) = (−1)m Il (ζ )Im (ζ ),

(same matrix describes the couple bunch wake terms for
sufficiently separated bunches).
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Figure 3: Absolute value of 40 by 40 dipole moments direct
product matrices, Ĝlm , plotted for different values of the
head-tail phase (ζ = 0,4,16,32).
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Figure 4: Absolute value of 10 by 10 driving resistive wall wake matrices, Ŵlm , plotted for different values of head-tail
phase (ζ = 0,2,4,8).

WAKE FORCES
When the wake terms Qw � Q2

s/Qmax, the no-wake
eigensystem { ȳk (τ), νk } is strongly perturbed. Below we
will provide the results of matrix elements calculation for
the resistive wall impedance with wake function W1(τ) de-
fined over a distance L as

Wm (z < 0) =
2 Jvc

π b2m+1(1 + δm0)

√
c
σs

L
√
|z |
,

where b is a vacuum chamber radius. The Yokoya factor,
Jvc, is equal to 1 for round vacuum chamber, and, π2/24
and π2/12 for horizontal and vertical directions for a flat
chamber.

Driving Wake
The matrix elements of the driving (dipole) wake operator

in no-wake modes basis are determined as

Ŵlm =

∫ ∞

−∞

∫ ∞

τ
dσ dτ

W (τ − σ)ρ(τ)ρ(σ) ȳl (τ) ȳm (σ)eiζ (τ−σ) ,

where W (τ) is the dipole wake function. The use of Fourier
transform of the resistive wall wake function

z(ω) def
=

∫ ∞

−∞

H(τ)
√
|τ |

eiωτ dτ =
√
π

2
1 + i sgn(ω)
√
|ω |

,

where H(τ) is a Heaviside step function, allows to reduce
double integral to a single one in a following manner:

Ŵlm =

∫ ∞

−∞

∫ ∞

−∞

dσ dτ

H(σ − τ)
√
|σ − τ |

ρ(τ)ρ(σ) ȳl (τ) ȳm (σ)eiζ (τ−σ)

= (−1)m
[
1 − i
√
2

∫ ζ

−∞

Il (ω)Im (ω)
√
ζ − ω

dω
2
√
π

+
1 + i
√
2

∫ ∞

ζ

Il (ω)Im (ω)
√
ω − ζ

dω
2
√
π

]
.

Absolute values of matrix elements of |Ŵ10×10 | for several
fixed values of ζ are plotted in Fig. 4

Detuning Wake
The matrix elements of the detuning (quadrupole) wake

operator in no-wake modes basis are determined as

D̂lm =

∫ ∞

−∞

∫ ∞

τ
D(τ − σ)ρ(τ)ρ(σ) ȳl (τ) ȳm (τ) dσ dτ,

where D(τ) is the detuning wake function. The calculation
of matrix elements can be simplified by reducing double
integration via factorization of the integrand:

D̂lm =

∫ ∞

−∞

∫ ∞

−∞

dσ dτ

H(σ − τ)
√
|σ − τ |

ρ(τ)ρ(σ) ȳl (τ) ȳm (τ)

=

∫ ∞

−∞

D(τ)ρ(τ) ȳl (τ) ȳm (τ) dτ.

The functionD(τ) describes the wake quadrupole field along
the bunch and is the same for all matrix elements:

D(τ) =
∫ ∞

−∞

H(σ − τ)
√
|σ − τ |

ρ(σ) dσ =
∫ ∞

0

ρ(σ + τ)
√
σ

dσ.
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Figure 5: Values of 40 by 40 detuning resistive wall wake
matrix, D̂lm .

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPMA040

MOPMA040
634

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

5: Beam Dynamics and EM Fields
D07 - High Intensity Circular Machines - Space Charge, Halos



STABILITY ANALYSIS
With the damper, the dynamic equation reads as

y(τ)′′ + ν e−τ
2/2 y(τ) = κ N

(
Ŵ + D̂

)
y(τ) + g Ĝ y(τ),

where g is a dimensionless complex damper gain. A straight
forward way to solve this equation is to search its eigenfunc-
tions ỹk (τ) as expanded over the no-wake basis ȳk (τ):

ỹ(τ) =
∞∑
k=0

Ck ȳk (τ).

This substitution immediately leads to the linear matrix prob-
lem for eigensystem[

κ
(
Ŵ + D̂

)
+ g Ĝ + diag{ν}

]
C = ν̃C,

where C = [C0,C1,C2, . . .]T is a vector of coefficients Ci to
be determined from eigensystem problem, and, diag{ν}lm
is a diagonal matrix νl δlm whose k-th diagonal element is a
k-th eigenvalue of the no-wake case.

Example 1: TMCI and Damper
With precalculated values of the wake and damper op-

erators, coherent tunes and instabilities thresholds can be
obtained using the SCHARGEV solver. By plotting real and
imaginary parts of the eigenfrequencies one can determine
the threshold of instabilities when the first mode coupling
appears. Example of eigenfrequencies with and without
damper usage are shown in a Fig. 6. In this particular case
damping allows to move the instability threshold, which can
be clearly seen from diagrams with imaginary parts. Note
that first intersection of modes in the case with damper does
not lead to mode coupling.
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Figure 6: First ten coherent tunes of the Gaussian bunch for
zero chromaticity and resistive wake as functions of wake
amplitude, κ̃. Left figures show no damper case, while right
ones show eigenfrequencies for damper with gain g = −0.5.
Real and imaginary parts are plotted at the top and bottom
rows respectively.

Example 2: Fermilab Recycler
The dependence of the growth rate of the most unstable

mode on the head-tail phase and damper gain for single Gaus-
sian bunch in Fermilab Recycler obtained via SCHARGEV is
presented in Fig. 7. Left and right figures are showing results
of analysis for horizontal and vertical degrees of freedom,[

κ

2
(
Ŵ − D̂

)
+ g Ĝ + diag{ν}

]
C = ν̃C

and [
κ

(
Ŵ +

D̂
2

)
+ g Ĝ + diag{ν}

]
C = ν̃C

respectively.

Figure 7: Growth rate of the most unstable mode versus
the head-tail phase and damper gain for Fermilab Recycler
(κ = 3.5).
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