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Abstract

The hourglass effect arises due to a coupling between the

longitudinal and transverse bunch planes. This coupling will

result in a charge density distribution that will vary parabol-

ically through the Interaction Point (IP). Here a method of

analytically determining the electric field a particle receives

from a charge density distribution which varies parabolically

when centred at the IP, is derived for a 2D transverse model

of a Gaussian bunch.

INTRODUCTION.

The High Luminosity Large Hadron Collider (HL-LHC)

seeks to reach even higher luminosities than previously

achieved. An increased luminosity can lead to a saturation

or "pile up" in the machine detectors. To avoid pile up in

the detectors, luminosity levelling has been proposed which

aims to hold the luminosity constant over the duration of a

physics run. One proposed method of levelling the luminos-

ity is to reduce the β-function at the IP as the bunch intensity

decays due to proton burn off.

One of the benefits of levelling by this method is it is

operationally easy to implement and the longitudinal vertex

density remains fixed when there is no crossing angle. The

flat beam option is an alternative operational scenario for

the HL-LHC when there are no crab cavities installed. To

reach high luminosities without crab cavities, small β∗ is

required to generate high luminosities. The final levelling

step of the flat beam option will give a β-function at the IP of

β∗x,y = 0.3/0.075 m. In this scenario, the β-function in the

vertical plane at the end of a physics run will be comparable

to the length of the bunch. When the length of the bunch is

comparable to the transverse bunch size, a coupling between

the planes is introduced, which results in the bunch varying

parabolically at the IP. This coupling will result in a deviation

from a Gaussian distribution in the longitudinal coordinate

as the bunch passes through the IP. Such a deviation will

result in some particles not colliding at the minimum β∗,

which will hence lead to a reduction in luminosity. This is

known as the hourglass effect.

Here, a new approach is applied to the beam-beam in-

teraction to obtain analytical solutions for the electric field

of a bunch that is centred at the IP undergoing a parabolic

variation due to the hourglass effect. From the electric field

in the rest frame of the bunch, one can later obtain the force

a test particle experiences when the counter rotating bunch

is centred at the IP.

THEORY

Starting from Maxwell’s equations, which when ex-

pressed in full are given by,

∂yBz − ∂zBy = μ (Jx + ε∂t Ex ) , (1)

∂xBz − ∂zBx = −μ
(
Jy + ε∂t Ey

)
, (2)

∂xBy − ∂y Bx = μ
(
Jz + ε∂t Ez

)
, (3)

∂yEz − ∂zEy = −∂t Bx , (4)

∂xEz − ∂zEx = ∂t By , (5)

∂xEy − ∂yEx = −∂t Bz , (6)

∂xBx + ∂y By + ∂zBz = 0, (7)

∂xEx + ∂yEy + ∂zEz =
ρ(x, y, z)

ε0
. (8)

If these equations are written in the rest frame of the bunch,

the problem can be treated as electrostatic, assuming that

there are no external magnetic fields in the rest frame. This

provides an appropriate starting point and is one that is

applied in the original derivation given by Bassetti-Erskine

[1]. Maxwell’s equations in the transverse planes are then

given by

∂xEy − ∂yEx = 0, (9)

∂xEx + ∂yEy =
ρ(x, y)

ε0
, (10)

Since the charge density distribution, ρ, is known and is

given by a Gaussian distribution, one is able to solve this

system of equations to obtain the transverse electric field

experienced by a particle as it traverses the electric field of

a counter rotating bunch. Following the method proposed

by Muratori et al, [2], one attempts to solve these non-linear

coupled partial differential equations using an expression

with a number of unconstrained functions, which in turn, will

reduce to the well known Bassetti-Erskine (BE) equation.

This method can then be extended for a charge density distri-

bution that has a parabolic dependence on the longitudinal

coordinate.

The BE equation for radially symmetric beams with fixed

transverse beam sizes is well known and is obtained through

solving Poisson’s equation for a Gaussian source. Poisson’s

equation relating the scalar potential ϕ to the charge density

distribution is given by,

∇
2ϕ =

ρ

ε0
. (11)

Solving this using the Green’s function method as intro-

duced by S.Kheifets [3] allows the radial electric field to be
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obtained,

Er =
nq

2πε0

1

r

[
1 − e

−
r

2

2σ2
r

]
. (12)

This gives the definite form of the BE equation for radially

symmetric round beams. Following the approach in [2], we

now use the method of unconstrained functions to derive

equation 12. An appropriate expression is chosen which

with unconstrained functions can reduce to the well known

BE equation. An expression for the electric field is selected

in the form,

Ex = f1(x, y)
[
1 − e f2 (x,y)

]
, (13)

Ey = f3(x, y)
[
1 − e f2 (x,y)

]
, (14)

where x and y are the transverse coordinates. From these

equations one can seek to solve for the unknown functions

f1,3, when the bunch distribution is known. Differentiating

equations 13, 14 with respect to all variables gives,

∂xEy = ∂x f3

[
1 − e f2

]
− f3∂x f2e f2 , (15)

∂xEx = ∂x f1

[
1 − e f2

]
− f1∂x f2e f2 , (16)

∂yEx = ∂y f1

[
1 − e f2

]
− f1∂y f2e f2 , (17)

∂yEy = ∂y f3

[
1 − e f2

]
− f3∂y f2e f2 . (18)

These expressions can then be substituted into equations 9

and 10 to give,

[
1 − e f2

]
(∂x fy − ∂y f1) + e f2

[
f1∂y f2 − f3∂x f2

]
= 0,

(19)[
1 − e f2

] (
∂x f1 + ∂y f3

)
+ e f2

[
f3∂y f2 − f1∂x f2

]
= ρ,

(20)

Collecting powers of the exponential argument,

e0

∂x f3 − ∂y f1 = 0, (21)

∂x f1 + ∂y f3 = 0, (22)

e f2 .

[
−e f2

] [
∂x f3 − ∂y f1

]
+ e f2

[
f1∂y f2 − f3∂x f2

]
= 0,

(23)[
−e f2

] [
∂x f1 + ∂y f3

]
− e f2

[
f3∂y f2 + f1∂x f2

]
= ρ.

(24)

From these equations, one is able to simplify and hence solve

for the unconstrained functions f1,3. Due to the brevity of

this paper only the simplest case is considered here such

that the bunch is centred at the IP and the collision is head

on. The charge density distribution is known, and is given

by a Gaussian function, in this case defined as ρ = ρ0 · e f2 ,

where ρ0 is the normalised charge density distribution and

equates to ρ0 =
nq

2πσ2
r

.

Making a substituting for f3 in terms of f1 and substituting

into equation 24 gives,

f1

⎡⎢⎢⎣∂x f2 +
(∂y f2)2

∂x f2

⎤⎥⎥⎦ = −1, (25)

which can be solved to give the functions f1 and from sym-

metry f3, for round bunches in the transverse planes.

f1 =
x

r2
, f3 =

y

r2
, (26)

where r2
= x2 + y

2. Substituting this back into the original

form given by equation 13 for the transverse electric field

gives,

Ex =
nq

2πε0
·

x

r2

[
1 − e−r

2
]
, (27)

Ey =
nq

2πε0
·
y

r2

[
1 − e−r

2
]
. (28)

From equations 27 and 28, one can transform the electric

field in x and y, to radial coordinates and the result is shown

to reduce to equation 12.

The Hourglass Effect

When the transverse bunch size is comparable to the

length of the bunch, a coupling is induced which will cause

the transverse bunch size to vary parabolically at the IP. This

coupling will cause a variation in the charge density dis-

tribution through the IP when σx,y ∼ σz . The transverse

bunch size will vary parabolically along the longitudinal

coordinate. For the hourglass effect, this variation and can

be given by σi = ki

(
1 + z2

β∗2

)
, where ki = ε i · β

∗

i
and ε i is

the emittance of the transverse planes, β∗
i

is the β-function

at the IP and the transverse coordinates are given by i = x, y .

This deviation from a Gaussian distribution along the longi-

tudinal coordinate, will result in a test particle experiencing

a different force from equation 12. When this coupling is

considered the force that a test particle experiences will not

only be dependent on the transverse amplitude of the test

particle but also on its longitudinal distance from the IP.

Starting from equations 21 to 24 and treating as colliding

head on only, one obtains the same expression as equation 25,

but the function f2 has the coupled bunch size included, such

that f2 = −
x2

2kx

(
1+ z2

β2∗

) − y2

2ky

(
1+ z2

β2∗

) . Which for round beams

will give,

f1 =

x · k

(
1 + z2

β∗2

)

r2
, f3 =

y · k

(
1 + z2

β∗2

)

r2
. (29)

Substituting f1,3 into equation 13 and equation 14 will give

the electric field in the transverse planes in the rest frame of
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the bunch as

Ex =
nq

2πσ2
x0
ε0
·

x · k

(
1 + z2

β∗2

)

r2

⎡⎢⎢⎢⎢⎢⎣
1 − exp

⎛
⎜⎜⎜⎝−

r2

2k

(
1 + z2

β∗2

)
⎞
⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
,

(30)

Ey =
nq

2πσ2
y0
ε0
·

y · k

(
1 + z2

β∗2

)

r2

⎡⎢⎢⎢⎢⎢⎣
1 − exp

⎛
⎜⎜⎜⎝−

r2

2k

(
1 + z2

β∗2

)
⎞
⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
.

(31)

From the electric field expressions in equations 30 and 31

one can calculate the electric field in cylindrical components.

Fig 1, shows how the charge density distribution and the

radial electric field will vary for a test particle as it traverses

a bunch with a transverse size that varies parabolically when

centred at the IP.

DISCUSSION

In this paper the method of unconstrained functions as

described in [2], is applied to calculate the electric field in

the rest frame of the bunch experienced by a transversing

test particle. The standard BE equation in radial coordinates,

given by equation 12 with constant transverse beam sizes

is recovered. This method is then further applied to obtain

the transverse electric field experienced by a test particle

when the transverse bunch size (σx,y ), is dependent on the

longitudinal coordinate. With a bunch size dependent on the

longitudinal coordinate the electric field in the rest frame

of the bunch is obtained and showed that the charge density

distribution will deviate from a Gaussian along the longitu-

dinal coordinate. This deviation will result in particles not

colliding at the minimum β∗, which in turn will result in a

loss of luminosity.

This method can be further applied to situations where the

charge density distribution will change through the IP and

may allow analytical expressions to be determined. A full

derivation in three dimensions to include a crossing angle

with a longitudinal electric field will be published by the

authors [4].
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