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Abstract
In the early design stages it is customary to work with

a highly simplified analytic model to describe a beamline.

Dipoles and quadrupoles are often based on hard-edged ap-

proximations. This is not only unrealistic, it also significantly

slows down time-domain spacecharge tracking codes such

as the General Particle Tracer (GPT) code. The underlying

reason for the poor performance is that, despite the fact that

the simple hard-edged field equations are fast to evaluate,

they force the integration process to use excessively small

step sizes near the field discontinuities in order to achieve

the desired accuracy. In other words, the apparently simple

equations turn out to be the most difficult ones to evaluate

numerically. An obvious solution is to switch to field-maps,

but this is not practical in the early design stages. In this

contribution we show a new solution implemented in the

GPT code based on analytical expressions for the fringes

where the transverse size of the magnet is properly taken

into account. In addition to producing more realistic results,

the smooth fields increase tracking speed by over an order

of magnitude for typical cases.

INTRODUCTION
Time domain simulations codes such as GPT [1, 2],

PARMELA and ASTRA are essential tools for the design

and understanding of high-brightness charged particle accel-

erators. The physics included in these codes is a particularly

good match for injector / RF-photogun simulations produc-

ing pulsed, high-brightness, high-charge beams. The way

the simulation codes operate is by tracking a large number

of sample particles through the superposition of external

fields and spacecharge fields. At each step in the simulation

the codes maintain a collection of sample particles, where

all particles are stored at the same time. This ensures self-

consistent results for Coulomb interactions, even when the

beam shape changes on relatively short time-scales. A sim-

ulation step involves the calculation of all electromagnetic

fields due to external beamline components at the position

of all sample particles, in addition to calculating the fields

due to space charge. These fields are fed into an Ordinary

Differential Equation (ODE) solver to solve the relativistic

equations of motion, thereby advancing the entire population

in time.

Regardless of the exact integration scheme, it is important

to have the correct timestep length. On the one hand, a

very small timestep gives accurate results at the costs of

excessive CPU time. On the other hand, a very large timestep

gives incorrect results. The best operating mode is arguably

with the largest timestep possible, giving results which are

’barely good enough’. Finding the right balance is difficult,

and this is further complicated by the fact that the optimal

timestep varies greatly along the beamline. Very small steps

must be taken during the emission process and in beamline

components with large gradients, whereas very large steps

can be taken in relatively constant or zero field regions.

Problems arise when part of the beamline is modelled

with hard-edge approximations. It might be that the fringes

capture relevant physics, and with ever brighter sources these

effects become increasingly important. Furthermore, tiny

integration steps need to be taken during the crossing of

the interface to maintain sufficient accuracy. For just one

particle this could be acceptable, but all particles have to be

tracked together to get self-consistent results. Consequently,

a timestep reduction for one particle crossing the interface

of a hard-edged beamline component implies in a timestep

reduction for all other particles as well. This significantly

slows down simulation speed, especially for long bunches

where there is always some particle crossing some interface.

This is the problem we address in this paper, in particular

for quadrupoles.

One solution to the problem of requiring small time-steps

crossing a hard-edge interface is to split the trajectory in

two halves at the interface: Neither half contains any dis-

continuities, and the simulation speed is restored. However,

this solution misses relevant physics captured in the fringe

fields, it requires non-trivial interpolation of the spacecharge

fields to a set of intermediate timesteps, and it involves extra

bookkeeping that makes misaligning beamline components

in 3D prohibitively difficult. Another solution is to use real-

istic field maps, not containing these discontinuities. This

restores the missing physics, it solves the problems arising

from discontinuities, but it is often rather unpractical in the

early design stages when fast parameter scans are required.

Furthermore, field-maps are intrinsically based on interpo-

lations causing a whole list of potential problems of their

own.

The conceptually easiest and arguably best solution that

solves all issues mentioned above is to track through a simple

continuously differentiable equation for the fields, Maxwell

compatible, including the fringes. Inspired by the analytical

fringe fields of dipoles [3], we show in the next section how

such expressions can be derived for higher order multipoles.

The subsequent section presents the results of a GPT imple-

mentation of these expressions for the case of quadrupoles.

Although the equations are far more complicated than the

hard-edge counterparts, we will show that the overall GPT

simulation speed is significantly improved.
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QUADRUPOLE FIELDS
We summarise below the results described in [3], we start

by writing Maxwell’s equations for three-dimensional fields

in a simple form and define the following new variables:

u =
1√
2

(x + iy),

v =
1√
2

(x − iy),

ζ =
√
2z.

We express the magnetic field in terms of components:

Bu =
1√
2

(Bx + iBy ),

Bv =
1√
2

(Bx − iBy ),

Bζ =
1√
2

Bz .

In terms of the new variables, Maxwell’s equations can now

be written as:

∂uBu + ∂ζBζ = 0, (1)

∂vBv + ∂ζBζ = 0, (2)

∂ζBu − ∂vBζ = 0, (3)

∂ζBv − ∂uBζ = 0. (4)

From (1) and (2), one can see immediately that, in the ab-

sence of any fringe fields, the general solution of Maxwell’s

equations for any magnet is given by:

Bu = f (v),
Bv = h(u),

for any functions f (v) and h(u). The case of a multipole of
order n (n = 1 for a quadrupole, n = 2 for a sextupole, and
so on) is given by:

Bu = ivn,

Bv = −iun,

Bζ = 0.

Therefore, a quadrupole is described by Bu = iv, Bv =

−iu and Bζ = 0. In strict analogy to the two dimensional

case and returning to the initial coordinate system, we find

that a particular solution to the three dimensional Maxwell

equations may be written as:

Bx = −id f (h + i
√
2z) + idg(h − i

√
2z), (5)

By = e f (h + i
√
2z) − eg(h − i

√
2z), (6)

Bz =
√
2 f (h + i

√
2z) +

√
2g(h − i

√
2z), (7)

where:

d =
1√
2

(
1

b
+ b

)
,

e =
1√
2

(
1

b
− b

)
,

b is a constant and h is expressed as:

h = dx + iey.

Now, as far as fringe fields are concerned, it is possible to

show that [1] they can always be expressed as appropriate

sums of the elementary solutions given by (5), (6) and (7)

with different multiplicative constants as well as different

values of the constant b above. The general expected fringe
field fall-off is given by the choice of the functions f (h +
i
√
2z) and g(h − i

√
2z) which govern the on-axis decay of

the field. Further, the constant b may also be varied and
this is found to affect the rapidity of the fall-off as one goes

off-axis transversely.

For the purpose of this paper, we take the limit b → 0

and we assume a decay of the gradient near the edge of the

quadrupole to be given by an Enge function of the form

1/(1 + Exp[α(z − zedge )]). For α = 1 and assuming the
edge of the magnet is at the z = 0 plane, this results in a
magnetostatic field given by:

Bx =
1

4

[
y + arctan

(
− sin y

(e−z + cos y)

)

− y sinh z
(cos x + cosh z)

]
,

By =
1

4

[
x + arctan

(
− sin y

(e−z + cos x)

)

− x sinh z
(cos y + cosh z)

]
,

Bz = −1
4

[
y sin x

(cos x + cosh z)
+

x sin y
(cos y + cosh z)

]
.

The field of an entire magnet can be constructed by combin-

ing two such profiles, where the distance between the two

edges indicates the size of a hard-edge magnet with identical

focusing strength, and where π/α is a measure for the bore
of the magnet.

This means that we no longer have full control of the

fringe field decay as we go off-axis in our quadrupole and

the result is no longer general. However, for the purposes of

tracking a bunch in a code like GPT, this is not essential and

what is far more important is the smoothness of the fall-off

and this is ensured thanks to the equations above.

GPT EXAMPLE
Implemented in the General Particle Tracer (GPT) code

are the fields described in the previous section, for the limit-

ing case b = 0. The reason for this simplification is that the
extra flexibility introduced by this parameter is beyond the

scope of this paper. As a test-case, a very simple beamline

is investigated using just a quadrupole doublet with a field

profile shown in Fig. 1. The doublet is set such that a beam

with a Lorentz factor of 100 is focused exactly at z = 1 m,
as shown in the sample trajectories of Fig 2.

The main difference between the hard-edge model and

the new analytical model with fringe fields is computational
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Figure 1: Field profile 1 mm off-axis, for the case of the

hard-edge (black) and the new analytical quadrupole case

with fringe fields (red). The transverse size of the analytical

model is 15 mm.

speed. In Fig. 3 we see the difference in CPU time for a

10 mm bunch containing 10k sample particles, as function

of overall simulation accuracy. It is clear that the result is

significant: Whereas the hard-edge model suffers from ex-

treme growth in CPU time as function of accuracy, the new

analytical model is much faster over the entire parameter

regime and almost independent on accuracy. The reason

being that the timesteps need not be reduced to get the de-

sired accuracy. This leads to the main conclusion of this

paper: The analytical expressions for quadrupole fields can

be used in a time domain tracking code to get physically

more realistic results in much faster simulation time.

An additional advantage of the closed form analytical

expressions is that they are a perfect match to modern hard-

ware because almost all modern computers have support for

Single Instruction Multiple Data (SIMD) vector instructions.

Examples are the AVX2 instruction set on Intel CPUâĂŹs

with a vector length of 256 bits, and Graphical Processing

Units (GPU)s with far larger vector lengths. This extra com-

putational power is typically very difficult to use, since it

requires all elements of the vector to perform the exact same

operations. This excludes branches, and consequently all

if-based code is extremely difficult to write such that it can
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Figure 2: Sample trajectories for the doublet focusing the

beam at z = 1 m.
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Figure 3: CPU time as function of simulation accuracy for

10k particles for the case of the hard-edge (black) and the

new analytical quadrupole case with fringe fields (red).

tap into these computational resources. The closed form

analytical expressions of the quadruple fields however are

such that they have the same expression, regardless if eval-

uated âĂŸinsideâĂŹ of âĂŸoutsideâĂŹ the magnet; It is

just one smooth branchless transition. Consequently, one

single thread of executable can calculate the fields of many

particles simultaneously without any addition overhead. On

a modern GPU employing thousands of floating point units,

this is a potential increase in computational speed of orders

of magnitude.

CONCLUSION
Analytical expressions for beamline components includ-

ing fringe fields do not only provide more realistic results,

they can simultaneously significantly decrease simulation

times for time-domain tracking codes. This has been shown

in this paper for the case of quadrupoles, but it is to be ex-

pected that the conclusions holds for other beamline compo-

nents as well. Because the relevance increases with increas-

ing particle numbers and increasing accuracy requirements,

analytical expressions including fringe-fields for multipoles

and RF-structures are a crucial addition to the next GPT

release that can track billions of particles on MPI clusters,

including space-charge.
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