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Abstract
The ESS Proton Linac will run a beam with 62.5 mA

of current. In the first meters of the accelerator, the non-

linear space-charge force dominates the dynamics of the

beam. The Drift Tube Linac, the Spoke resonators and the

elliptical cavities, which are responsible for the 99.8% of

the total energy gained by the beam along the accelerator,

produce a significant longitudinal non-linear force on the

proton beam. In this paper, we introduce a new theory to

transport the probability density function of the beam under

the effect of non-linear forces. A model based on this theory

can be implemented in the ESS Linac Simulator for the fast

simulations to be performed during the operations of the

proton Linac.

INTRODUCTION
The success of the Courant-Snyder theory with particle

accelerators is due to the simple connection between the dy-

namics of one particle and the dynamics of a beam. A single

particle is fully described by the vector of its coordinates

and momenta at a given time:

�v =
(
q1q2 . . . qnp1p2 . . . pn

)T . (1)

If H is the Hamiltonian, the equations of motion can be

expressed as

d
dt
�v = S · �∂H (2)

where �∂ and S are defined as
�∂ =
(
∂/∂q1∂/∂q2 . . . ∂/∂qn∂/∂p1∂/∂p2 . . . ∂/∂pn

)T
(3)

S =
(
0 I
−I 0

)
. (4)

When the Hamiltonian is quadratic in coordinates and mo-

menta, H = f (qi2, pi2), it can be written as �∂H = A · �v,
where A is a matrix. The equations of motion become

d
dt
�v = S · A · �v (5)

with the solution

�v(t) = etSA · �v(0) (6)

M (t) = etSA (7)

�v(t) = M (t) · �v(0). (8)

In this case, M (t) is the transport matrix that effects the
changes of coordinates and momenta for each linear element

of the accelerator.

Because of the linear nature of Eq. (8), it is possible to

use the same matrix M (t) to transport the r.m.s. of a bunch
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of particles using equation [1]:(
σ2x σxσx′

σxσx′ σ2x′

)
t

= M
(
σ2x σxσx′

σxσx′ σ2x′

)
0

MT

(9)

here we only consider one dimension, using the standard

notation x = qx and x ′ = px

pz
, where qx and px are the

respective conjugate coordinate and momentum in the hori-

zontal plane x and pz is the momentum in the direction of

motion of the particles.

When the force is non-linear,H � f (qi2, pi2), Eqs. (8)
and (9) are no longer valid. In the following sections, we will

show how to construct a general solution for the equations

of motion of a bunch of particles, starting from the solution

of the equation for a single particle, generalising the Eq. (9)

for the case of non-linear forces.

BEAM DENSITY
Let us assume that we were able to solve the equation of

motion in (2) in the case of a non-linear force, that is, when

H � f (qi2, pi2). We will then have an equation of motion
for a single particle in the form

�v(t) = f (�v(0)) (10)

where f is

f : R2n → R2n (11)

with n coordinates and momenta; for all the practical cases
n = 3.
In order to pass from the single-particle solution to one

with many particles, we start by considering an invariant

of a beam: the number of particles. This number will not

change along the accelerator unless the losses are a signifi-

cant fraction of the total number of particles. If ρps is the
probability density function of the beam in the phase space,

the number of particles can be expressed as:

N =
∫
R2n

ρpsdq1dq2 . . . dqndp1dp2 . . . dpn . (12)

We know from the Liouville theorem that if the dynamics

is symplectic then the volume of the phase space is pre-

served. Thus, any dynamics that apply it will keep the quan-

tity dq1dq2 . . . dqndp1dp2 . . . dpn constant. On the other
hand, we also know that the number of particles is preserved

in the physical space and in the momentum space separately:

N =
∫
Rn

ρr dq1dq2 . . . dqn (13)

N =
∫
Rn

ρmdp1dp2 . . . dpn (14)

where ρr and ρm are the beam density in the real space

and in the momentum space, respectively. These two inte-

grals are invariant all along the machine and we can express

this invariance by saying that at any time t the following
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equations are valid:

ρr (t)Vr (t) = ρr (0)Vr (0) (15)

ρm (t)Vm (t) = ρm (0)Vm (0) (16)

Vr (t)Vm (t) = Vr (0)Vm (0) (17)

where Vr and Vm are the volume elements given by Vr =

dq1dq2 . . . dqn and Vm = dp1dp2 . . . dpn and Eq. (17) ex-
presses the invariance of the phase-space volume.

We can now see the function f from Eq. (10) as a geo-

metrical transformation of space: f will send the points of
R
2n into new points of R2n . Consequently, we can calculate

how the volume elements Vr and Vm are transformed under

the action of f . Vr is an n-form and its transformation is

such that

Vr (t) = |Jr |Vr (0) (18)

where |Jr | is the determinant of the Jacobian matrix, con-
structed as

Jr =
������

∂ fq1
∂q1

. . .
∂ fq1
∂qn

...
...

...
∂ fqn

∂q1
. . .

∂ fqn

∂qn

������
. (19)

The change in the volume Vr in Eq. (15) has to be can-

celled by the same but opposite change in the density func-

tion ρr in order to keep the number of particles constant (the
same applies to Vm and ρm). We then have

ρr (t) =
ρr (0)
|Jr | (20)

ρm (t) =
ρm (0)
|Jm | . (21)

Equations (20) and (21) are general equations of motion

for a bunch of particles under the influence of linear and

non-linear forces.

The technique for expressing the beam dynamics will then

require solving the equation of motion for a single particle,

calculating the Jacobian matrix and its determinant, and

finally dividing the beam density function by this determi-

nant. This technique can mean facing the difficulty that the

function f from Eq. (10) will typically depend on qi and
pi and the evaluation of the two separate Jacobians will re-
quire some assumptions about a possible dependency of the

momentum on the position.

LIE TRANSFORMATION
So far, nothing has been said about the function f from

Eq. (10), which is responsible for the transport of a single

particle. The most elegant way to treat a general non-linear

Hamiltonian is to use the Lie transformation [2–4]. If f :
R
2n → R2n and g : R2n → R2n are two differentiable

functions, then we say that the Lie operator : f : is applied
to g

: f : g =
n∑
i=1

(
∂ f
∂qi

∂g

∂pi
− ∂ f
∂pi

∂g

∂qi

)
. (22)

It is also possible to calculate the powers of a Lie operator

such as

(: f :)2 g =: f : (: f : g). (23)

In particular,

e: f :g =
∞∑
i=0

(: f :)i

i!
g (24)

is called the f Lie transformation of g. In an element of
finite length L with an HamiltonianH we have the special

relationship

qi (L) = e:−LH :qi (0) (25)

pi (L) = e:−LH :pi (0) (26)

or, in our notation

�v(L) = e:−LH :�v(0) (27)

which is the general equation for the transport of a particle,

regardless of the linear or non-linear nature of the force. A

proof of this equation can be found in [3].

LINEAR EXAMPLE
The one-dimensional Hamiltonian for a quadrupolar force

is

H = 1

2
(k2x2 + p2x ). (28)

The equations of motion in terms of Lie transform are then

xL = e:−
L
2 (k2x2+p2x ):x (29)

pxL = e:−
L
2 (k2x2+p2x ):px (30)

where the L index refers to the variables after the action of

a magnet of length L. Recalling Eq. (24) we have

xL =

∞∑
i=0

(−1)i
[

(kL)2i

(2i)!
x +

(kL)2i+1

(2i + 1)!
px

k

]
(31)

PxL =

∞∑
i=0

(−1)i
[
− (kL)2i+1

(2i + 1)!
k x +

(kL)2i

(2i)!
px

]
(32)

or

xL = x cos(kL) +
px

k
sin(kL) (33)

pxL = −k x sin(kL) + px cos(kL) (34)

which are the well-known expressions for motion through a

quadrupole.

We can calculate how the standard deviation of the beam

changes under this transformation:

σ2xL
=

∫
R2

xL
2ρpsdxdpx . (35)

We know from Eqs. (20) and (21) that the quantity

ρpsdxdpx is constant, so we have

σ2xL
=

∫
R2

(
x cos(kL) +

px

k
sin(kL)

)2
ρpsdxdpx (36)

= cos2(kL)σ2x +
sin2(kL)

k2
σp2x
+ (37)

+
2 cos(kL) sin(kL)

k
σxσpx . (38)

This result is the same as what we would have obtained if we

used the standard equation for the linear transport Eq. (9).

It is worth noting here that ourσxL is a linear combination
of the initialσ’s because the transport map was linear. When
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the map is non-linear, the standard deviation can still be cal-
culated by expanding the non-linear function and evaluating
the high-order statistical estimator, such as:

〈qi (t)〉 = α〈qi 〉 〈qi (0)〉 + α〈qi
2〉
〈
qi (0)2

〉
+ α〈qi

3〉
〈
qi (0)3

〉
+ . . .

(39)

where the α coefficients are from the Taylor expansion. This

evaluation of the standard deviation can be concatenated for

different non-linear elements only if after a certain α the
terms are negligible. Otherwise, the truncated series will

introduce an error that will diverge.

NON-LINEAR EXAMPLE
The one dimensional Hamiltonian for an octupolar force

with a gradient k3 is:

H = 1

4
(k3x4 + p2x ). (40)

The equations of motion in terms of the Lie transform are

then:

xL = e:−
L
4 (k3x4+p2x ):x (41)

pxL = e:−
L
4 (k3x4+p2x ):px (42)

This calculation cannot be performed in the same elegant

manner as the linear example because the sum from the

Lie transform does not converge to a known function as

before. Nevertheless, it is possible to expand the exponential

according to Eq. (24), truncate at certain order, and evaluate

it. The choice of the order to truncate to and the relative error

can be evaluated using the determinant of the full Jacobian

for the phase space. In one dimension it is:

|J | = ∂xL

∂x
∂pxL

∂pxL

− ∂xL

∂pxL

∂pxL

∂x
. (43)

This determinant has to be one, |J | = 1, so the distance of
this determinant from 1 is the error due to the approximation

of the truncated series in Eqs. (41) and (42). The result is

like

x̃L =

n∑
i=0

(
: −LH :

) i
i!

x (44)

p̃xL =

n∑
i=0

(
: −LH :

) i
i!

px (45)

where the ∼ express the approximation of the series at the
order n. Finally the evaluation of the new beam density is

performed applying Eq. (20); in the one-dimensional case

the determinant of the Jacobian is simply the derivative

|Jr | = dx̃L

dx
. (46)

x̃L is a function of x and px but for the purpose of this

paper we evaluate the determinant assuming large-aptitude

particles where the approximation px = −α
β x holds.

In Fig. 1 the qualitative behaviour of a Gaussian beam is

illustrated, passing through an octupole with theHamiltonian

of Eq. (40) or a sextupole of HamiltonianH = 1
6

k2x3 + p2x
2
.

The characteristics shape for the transit of the beam

through a sextupole or an octupole is obtained using the

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

2

4

6

8

x

ρ
(x

)

Initial Distribution

After Sextupole

After Octupole

Figure 1: [Color] Gaussian beam passing through a sex-

tupole or an octupole. The characteristic shift on the beam

center is visible for the sextupole, while the folding of the

tails is visible for the octupole.

theory illustrated in herein. This shape is in agreement with

previous results, as seen in [5] and [6].

CONCLUSIONS
We presented a new technique for addressing the non-

linear problem of beam dynamics based on the study of

beam density. This method is analogous to the standard en-

velope calculation when the force is linear. In the non-linear

case, the modification of the beam density is useful for un-

derstanding the behavior of the beam without requiring full

multi-particle tracking. The sextupole and octupole calcula-

tions are qualitatively in agreement. The future development

of this technique will involve the prediction of experimental

results, such as the effect of strong non-linear space charges

of high-current accelerators like ESS.
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