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Abstract
Accelerating cavities that excite multiple modes at integer

harmonics of the fundamental frequency can potentially be
used to limit the effects of rf breakdown and pulsed surface
heating at high accelerating gradients. Understanding the
longitudinal stability and the acceptance of such a cavity
is important to their development and use. The general
Hamiltonian for longitudinal stability in multi harmonic
cavities is derived and the particle dynamics are explored.

INTRODUCTION
A multi-harmonic cavity that operates at high gradients

could act as an alternative cavity design for CLIC. Cavities of
this type have unconventional surface electric and magnetic
field profiles that can potentially lower the surface field emis-
sion and/or pulsed surface heating without compromising
the gradient [1]. Two particular phenomena found in multi-
harmonic cavities provide the main motivation for their use:
(a) the anode-cathode effect, which can be found in an asym-
metric multi-harmonic cavity that relies on fields pointing
into one wall (cathode-like) to be significantly smaller than
fields pointing away (anode-like) from the same wall. This
effect will raise the work function barrier to supress field
and secondary emission, and (b) a reduction in the surface
heating by lowering the average H2

‖
along the surface.

For cavities of this type to be used in an accelerator, the
effect of the additional mode on a bunch of traversing parti-
cles needs to be explored. To achieve this, a Hamiltonian is
derived that describes the behaviour of particles with small
deviations from the synchronous particle in energy and/or
phase. Typical formalisms of this kind only account for a
single TM010 mode which follow a cos(kz) longitudinal dis-
tribution [2, 3] (where k is the wave number and z is the
longitudinal coordinate) and not for a combination of modes
with different longitudinal field profiles.

Harmonic rf systems are often used to linearise the energy
gain [4] and reduce the energy spread of the bunch [5, 6].
These typically require an additional cavity operating in a
TM010 mode with a frequency that is an integer harmonic
of the main cavities. Here however, we excite two modes
simultaneously within one cavity.
The first section presents tracking results for a particle

traversing a linac and this is compared with the Hamiltonian
found in literature. In subsequent sections, a general Hamil-
tonian for multi-harmonic cavities is derived and applied to
two seperate modal configurations.
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SINGLE MODE PARTICLE TRACKING
The electric field of a TM010 standing wave in a cavity

with amplitude E0 is

ET = E0 cos (kz) cos (ωt + φ). (1)

where φ is the phase of the field when the particle is at z = 0,
ω is the angular frequency and k = 2π/βsλ. The energy
gain of a charge q as it crosses a single cavity gap g is given
by

W = qE0

∫ g/2

−g/2
cos (kz) cos (ωt + φ)dz (2)

The energy relative to the synchronous particle is w =

W − Ws . The relevant differential equations in terms of
the Hamiltonian H are given by [2]

dw
ds
= qE1T (β)(cos (φ) − cos (φs )) = −

∂H
∂φ

(3)

and
dφ
ds
= −2π

w

γ3s β
3
smc2λ

=
∂H
∂w

, (4)

where V0 = E0
∫ g/2
−g/2 cos (kz)dz. and T is the transit time

factor given by

T (β) =

∫ g/2
−g/2 cos (kz) cos (ωz

βc )dz

V0
, (5)

with E1 = V0/g. For the synchronous particle, T remains
constant as the cavity gap increases with βs . For negligibly
small acceleration rates, the differential equations can be
integrated, and the Hamiltonian is

H =
π

β3sγ
3
smc2λ

w2 + qE1T[sin φ − φ cos (φs )], (6)

where βs and γs refer to the velocity and gamma factor of
the synchronous particle.

Figure 1: Comparison of Hamiltonian with particle tracked
according to Eq. 2.
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Figure 2: Phase space plots for a cavity exciting both the TM010 and TM011 modes. A phase shift is gradually applied to the
TM011 mode and the gradient is kept constant for each step. For all steps, α = 0.222. Rows (a) and (c) show the energy gain
of a traversing particle as a function of its initial phase offset. Rows (b) and (d) show the phase space contours, with the
seperatrix marked in red.

A comparison between tracking the particle directly under
the influence of the field with the derived Hamiltonian can
be found in Fig. 1. The parameters used were consistant with
an X-band cavity, with E0 = 1mV/m and φs = −π/3. To
assess the accuracy of the Hamiltonian, we have subjected
the particles to an extremely small acceleration (1mV/m).
We injected particles with an initial energy of 1MeV and
this makes the effect of acceleration negligible within a few
cavities (as it is less than a second order effect). Nonetheless,
there is an 8% discrepency discernible in Fig. 1 between the
two methods and this we attribute to the change in velocity
which accumulates after transit through several thousand
cavities.

GENERAL HAMILTONIAN FOR
MULTI-HARMONIC CAVITIES

The electric field in a multi-harmonic cavity is given by

ET = E0[(1 − α) cos (kz) cos (ωt + φ)
+ α cos (hkz + φzh ) cos (h(ωt + φ) + φnh )]

(7)

where α is the fractional contribution from the additional
harmonic, h is the harmonic number, φzh is a phase shift
relating to the longitudinal distribution and φnh is a phase
shift in time for the harmonic mode that is additional to the
shift from the synchronous phase. The energy gain of a
particle traversing this field is given by

W = q[E1(1 − α) cos (φ) + αEh (cos (φnh ) sin (hφ)
+ sin (φnh ) cos (hφ))],

(8)

where

E1 =
E0
g

∫ g/2

−g/2
cos (kz) cos (ω

z
βc

)dz (9)

and

Eh = −
E0
g

∫ g/2

−g/2
cos (hkz + φzh ) cos (hω

z
βc

)dz. (10)

Using Eq. 8, a differential equation for energy can be ob-
tained, and a general Hamiltonian can be derived by fol-
lowing the same methodology as that found in the previous
section.

H =
π

β3sγ
3
smc2λ

w2 + qW0[E1(1 − α)(sin φ − φ cos φs )

+ Ehα[cos(φnh )(
cos (hφ)

h
− φ sin (hφs ))

+ sin (φnh )(
sin (hφ)

h
+ φ cos (hφs ))]],

(11)

where W0 is a scaling factor that is used to ensure the energy
gain of the synchronous particle is the same for each step
within each study. We now apply this Hamiltonian to glean
some insight into the beam dynamics in second harmonic
and third harmonic cavities.

SECOND HARMONIC CAVITY
In the case of a cavity that excites a fundamental TM010

mode with a second harmonic TM011 mode, h = 2, φzh =
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Figure 4: Phase space plots for a cavity exciting both the TM010 and TM012 modes. α is varied to determine at what
harmonic field strength secondary buckets begin to emerge. Rows (a) and (c) show the energy gain of a traversing particle
as a function of its initial phase offset. Rows (b) and (d) show the phase space contours, with the seperatrix marked in red.

−π/2. We prescribe the syncronous phase of the second
harmonic by assigning it a value that reduces the acelerating
gradient to half the peak. This is in order to be consistent
with the single mode case. This synchronous phase varies
for each step. Here, φnh is varied, in order to determine the
variation of the acceptance.

The energy gain and phase space contours for a second
harmonic cavity are displayed in Fig. 2. It can be seen that
as φnh increases, a plateau begins to form in the energy gain
of particles crossing the cavity. This allows a reduction in
the energy spread and a large increase in the phase width
of the bucket. The acceptance for each step can be found in
Fig. 3

Figure 3: Acceptance of the accelerating bucket in a second
harmonic cavity with α = 0.222 as a function of φnh .

THIRD HARMONIC CAVITY
Here, we consider simultaneous excitation of a TM010

modewith a third harmonic TM012 mode, which corresponds
to h = 3 and φzh,nh = 0. The contribution from the har-
monic mode α will be varied in order to determine when

additional stable regions form in between the main acceler-
ating buckets.
The beam dynamics in this case is investigated and the

results are shown in Fig. 4. The contours begin to distort
as α increases, however it is not until α = 0.6 that stable
regions begin to form, shown in Fig. 5. The additional
buckets emerge when the peak of the field in between the
main buckets exceeds the energy gain of the synchronous
particle.

Figure 5: Acceptance of the accelerating bucket as a function
of α. The red line is the primary bucket and the blue line is
for the secondary buckets.

CONCLUSION
A Hamiltonian has been derived that allows an arbitrary

combination of harmonic modes to be modelled. This was
then applied to two different mode configurations in order
to gain an insight into the phase space behaviour of the
particles. Future studies will be focused on beam dynamics
with accelerating gradients appropriate to linear colliders
and light sources.
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