TUBC —  Contributed Orals (MC2)   (05-May-15   15:00—16:00)
Chair: H. Tanaka, RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
Paper Title Page
TUBC1 Recent Progress and Operational Status of the Compact ERL at KEK 1359
 
  • S. Sakanaka, M. Adachi, S. Adachi, T. Akagi, M. Akemoto, D.A. Arakawa, S. Araki, S. Asaoka, M. Egi, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X.J. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, A. Kosuge, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, N. Terunuma, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, J. Urakawa, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, M. Mori, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program from the MEXT, and by the MEXT grant for promoting technology for nuclear security.
The Compact Energy Recovery Linac (cERL) is a superconducting test accelerator aimed at establishing technologies for the ERL-based future light source. After its construction during 2009 to 2013, the first CW beams of 20 MeV were successfully transported through the recirculation loop in February 2014*. Then, initial tuning of beams and evaluations of beam properties were carried out. From September to December in 2014, we are constructing a Laser Compton Scattering (LCS) source** which aims at demonstrating technology for the future high-flux quasi-monochromatic gamma-ray source. In the next run of the cERL, which begins at the end of January 2015, we plan such works as an increase in the beam current (from 10 uA to 100 uA), commissioning of the LCS source, and sustained tuning of beams for lower emittance. We will report up-to-date results of these developments.
* N. Nakamura et al., IPAC2014, MOPRO110; S. Sakanaka et al., LINAC14, TUPOL01.
** R. Nagai et al., IPAC2014, WEPRO003.
 
slides icon Slides TUBC1 [2.679 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBC1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBC2 Multi-GHz Pulse-Train X-Band Capability for Laser Compton X-Ray and Gamma-Ray Sources 1363
 
  • D.J. Gibson, G.G. Anderson, S.G. Anderson, C.P.J. Barty, R.A. Marsh, M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A wide variety of light-source applications would benefit from increased average brightness, which generally corresponds to increasing average current in the driving accelerator. Presented is an accelerator architecture that is capable of producing hundreds of electron bunches, spaced as close together as every RF cycle, which provides the chance to increase current while maintaining beam quality. This system relies on an X-band photoinjector and a photoinjection drive laser that is driven by the same rf source to ensure synchronization, and an interaction laser system designed to match the duty cycle of the electron pulse train. Results of the photoinjector laser performance and initial experimental measurements of beam quality in accelerated bunch trains are presented, along with a discussion of the impact on the performance of tunable, narrow-bandwidth x-ray and gamma-ray beams based on Compton-scattering.
 
slides icon Slides TUBC2 [20.256 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBC2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBC3 Recent Results from FEL seeding at FLASH 1366
 
  • J. Bödewadt, S. Ackermann, R.W. Aßmann, N. Ekanayake, B. Faatz, G. Feng, I. Hartl, R. Ivanov, T. Laarmann, J.M. Müller, T. Tanikawa
    DESY, Hamburg, Germany
  • S. Ackermann, Ph. Amstutz, A. Azima, M. Drescher, L.L. Lazzarino, C. Lechner, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Roßbach
    Uni HH, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  The free-electron laser facility FLASH at DESY operates since several years in SASE mode, delivering high-intensity FEL pulses in the extreme ultra violet and soft x-ray wavelength range for users. In order to get more control of the characteristics of the FEL pulses external FEL seeding has proven to be a reliable method to do so. At FLASH, an experimental setup to test several different external seeding methods has been installed since 2010. After successful demonstration of direct seeding at 38 nm, the setup is now being operated in HGHG and later EEHG mode. Furthermore, other studies on laser induced effects on the electron beam dynamics have been performed. In this contribution, we give an overview of recent experimental results on FEL seeding at FLASH.  
slides icon Slides TUBC3 [6.651 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBC3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)