Author: Zaplatin, E.N.
Paper Title Page
WEPMA035 Low- and High-Beta SRF Elliptical Cavity Stiffening 2835
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Elliptical SRF cavities are the main accelerating structures in many accelerators worldwide. Different types of external loads on the resonator walls predetermine the main working conditions of the SC cavities. The most important of them are very high electromagnetic fields that result in strong Lorentz forces and the pressure on cavity walls from the helium tank that also deforms the cavity shape. Also mechanical eigen resonances of cavities are the main source of the microphonics. To withstand any kind of external loads on the resonator walls different schemes of the cavity stiffening were applied. In the paper we report the basic investigations of the cavity stiffening using FNAL 650 MHz β=0.92 and 0.61 as an example. The single-cell investigation results were used as the reference to develop the ultimate scheme of the helium vessel structure to ensure the best resonator stability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA036 Double-Cell Notch Filter for SRF Gun Investigations 2838
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Some projects of SRF guns apply the design where the cathode can be easily and quickly removed. One of the disadvantages of this design is the RF power leakage from the accelerating gun cavity cells to the cathode housing that results in the excessive cathode heating. To minimize the RF power leak different kinds of choke filters are used to protect the cathode structure. These choke filters represent resonant circuits with a zero input impedance and installed at the entrance of the cathode structure that shunt the cathode housing. Still, since the choke filter frequency shift under working conditions is bigger than its bandwidth a filter tuning during assembly only in the warm stage seems insufficient and requires also fine-tuning during operation. To eliminate the problems of the choke filter fine-tuning and hence ensure its stability during operation, a combination of the resonance choke elements can be implemented. In the paper we demonstrate advantages of the double-cell notch filter using BERLinPro SRF gun cavity as an example with its simple design modifications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA037 Manufacturing and First Test Results of Euclid SRF Conical Half-wave Resonator 2841
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • C.H. Boulware, T.L. Grimm, A. Rogacki
    Niowave, Inc., Lansing, Michigan, USA
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This Work is supported by the DOE SBIR Program, contract # DE-SC0006302.
Euclid TechLabs has developed a superconducting conical half-wave resonator (162.5 MHz β=v/c=0.11) for the high-intensity proton accelerator complex proposed at Fermi National Accelerator Laboratory. The main objective of this project is to provide a resonator design with high mechanical stability based on an idea of the balancing cavity frequency shifts caused by external loads. A unique cavity side-tuning option has been successfully implemented. Niowave, Inc. proposed a complete cavity production procedure including preparation of technical drawings, processing steps and resonator high-gradient tests. During manufacturing a series of cavity and helium vessel modifications to simplify their manufacturing were proposed. Following standard buffered chemical polish surface treatment and high-pressure rinse, a vertical test was carried out at Niowave’s facilities. Here we present the status of the project and the first high-gradient results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)