Author: Xu, X.L.
Paper Title Page
MOAC3
Coherent Phase Space Matching for Staging Plasma and Traditional Accelerator Using Longitudinally Tailored Plasma Structure  
 
  • X.L. Xu
    TUB, Beijing, People's Republic of China
 
  For the further development of plasma based accelerators, phase space matching between plasma acceleration stages and between plasma stages and traditional accelerator components becomes a very critical issue for high quality high energy acceleration and its applications in light sources and colliders. Without proper matching, catastrophic emittance growth in the presence of definite energy spread may occur when the beam propagating through different stages and components due to the drastic differences of transverse focusing strength. In this paper we propose to use longitudinally tailored plasma structures as phase space matching components to properly guide the beam through stages. Theoretical analysis and full 3-dimensional particle-in-cell simulations are utilized to show clearly how these structures may work in four different scenarios. Very good agreements between theory and simulations are obtained.  
slides icon Slides MOAC3 [5.534 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA059 Lorentz boosted frame simulation of Laser wakefield acceleration using hybrid Yee-fft solver in quasi-3d geometry 691
 
  • P. Yu, A.W. Davidson, V.K. Decyk, W.B. Mori, A. Tableman, F.S. Tsung
    UCLA, Los Angeles, California, USA
  • F. Fiuza, L.O. Silva, J. Vieira
    IPFN, Lisbon, Portugal
  • R.A. Fonseca
    ISCTE - IUL, Lisboa, Portugal
  • W. Lu, X.L. Xu
    TUB, Beijing, People's Republic of China
 
  We present results from a preliminary study on modeling Laser wakefield acceleration (LWFA) with OSIRIS in a Lorentz boosted frame using a quasi-3D algorithm. In the quasi-3D algorithm, the fields and currents are expanded into azimuthal harmonics and only a limited number of harmonics are kept. Field equations in (r,z) space are solved for a desired number of harmonics in φ. To suppress the numerical Cerenkov instability (NCI) that inevitably arises due to the relativistic plasma drift in the simulation, we use a hybrid Yee-FFT solver in which the field equations are solved in (kz, r) space, where \hat{z} is the drifting direction. Preliminary results show that high fidelity LWFA boosted frame simulations can be carried out with no evidence of the NCI. Good agreement is found when comparing LWFA boosted frame simulations in the full 3D geometry against those in the quasi-3D geometry. In addition, we discuss how the moving window can be combined with the hybrid Yee-FFT solver to further speed up the simulation. The results indicate that unprecedented speed ups for LWFA simulations can be achieved when combining the Lorentz boosted frame technique, the quasi-3D algorithm, and a moving window.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)