Author: Xiao, C.
Paper Title Page
MOPWA026 Demonstration of Flat Ion Beam Creation and Injection into a Synchrotron 153
 
  • L. Groening, S. Appel, L.H.J. Bozyk, Y. El Hayek, M.T. Maier, C. Xiao
    GSI, Darmstadt, Germany
 
  At GSI an ion beam with different horizontal and vertical emittances has been created from a beam with initially equal emittances. This round-to-flat adoption has been accomplished without any beam loss. In the set-up the beam passes through a stripping foil placed inside a solenoid followed by a skewed quadrupole triplet. The amount of beam flatness has been controlled by setting the solenoid field strength only. Increase of the product of the two transverse emittances is purely due to the stripping process that occurs anyway along an ion linac. Beams with different amounts of flatness were injected into a synchrotron applying horizontal multi-turn injection. The efficiency of injection increased as smaller as the horizontal emittance was set by the round-to-flat adaptor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXB2 Upgrade of the Unilac for Fair 1281
 
  • L. Groening, A. Adonin, R. M. Brodhage, X. Du, R. Hollinger, O.K. Kester, S. Mickat, A. Orzhekhovskaya, B. Schlitt, G. Schreiber, H. Vormann, C. Xiao
    GSI, Darmstadt, Germany
  • H. Hähnel, U. Ratzinger, A. Seibel, R. Tiede
    IAP, Frankfurt am Main, Germany
 
  The UNIversal Linear Accelerator (UNILAC) at GSI serves as injector for all ion species from protons to uranium since four decades. Its 108 MHz Alvarez type DTL providing acceleration from 1.4 MeV/u to 11.4 MeV/u has suffered from material fatigue. The DTL will be replaced by a completely new section with almost same design parameters, i.e. pulsed current of up to 15 mA of 238U28+ at 11.4 MeV/u. A dedicated terminal & LEBT for operation with 238U4+ is currently constructed. The uranium sources need to be upgraded in order to provide increased beam brilliances and for operation at 3 Hz. In parallel a 70 MeV / 70 mA proton linac based on H-mode cavities is under design and construction. This contribution will also give a brief summary of the overall status of the FAIR project.  
slides icon Slides TUXB2 [4.634 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUXB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)